Sao un dài thế? Hay là Sn? Chắc là Sn đó
\(C^3_n=\dfrac{n!}{3!.\left(n-3\right)!}=\dfrac{n\left(n-1\right)\left(n-2\right)}{6}\)
\(\Rightarrow\dfrac{1}{C^3_n}=\dfrac{6}{n\left(n-1\right)\left(n-2\right)}\)
\(\Rightarrow S_n=\dfrac{6}{1.2.3}+\dfrac{6}{2.3.4}+\dfrac{6}{3.4.5}+\dfrac{6}{4.5.6}+...+\dfrac{6}{n\left(n-1\right)\left(n-2\right)}\)
Này hình như toán lớp 6 thì phải, chả nhớ :v
\(\dfrac{1}{n\left(n-1\right)\left(n-2\right)}=\dfrac{n-\left(n-2\right)}{2.n\left(n-1\right)\left(n-2\right)}=\dfrac{1}{2\left(n-1\right)\left(n-2\right)}-\dfrac{1}{2n\left(n-1\right)}=\dfrac{1}{2}\left(\dfrac{1}{n-1}.\dfrac{1}{n-2}-\dfrac{1}{n-1}.\dfrac{1}{n}\right)\)
\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{6}\right);\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{6}-\dfrac{1}{12}\right);...\)
Cộng lại thì sẽ triệt tiêu mấy phần tử 1/6; 1/12;...
\(\Rightarrow S_n=6.\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n-1\right)}\right)=3\left(\dfrac{1}{2}-\dfrac{1}{n\left(n-1\right)}\right)\)
\(\Rightarrow lim\left(\dfrac{3}{2}-\dfrac{3}{n^2-n}\right)=\dfrac{3}{2}\)
Lâu ko ôn lại cũng miss cách tính limit luôn :v Cơ mà có khi bằng 3/2 thiệt á, check lại hộ tui xem