Chương 4: GIỚI HẠN

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
你混過 vulnerable 他 難...

1. Tìm lim un

a. \(u_n=\dfrac{1}{2^2-1}+\dfrac{1}{3^2-1}+...+\dfrac{1}{n^2-1}\)

b. \(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)

c.\(u_n=\dfrac{1}{1}+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+...+n}\)

d. \(u_n=\left[\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)\right]\)

Ai giúp mk với hoặc gợi ý cho mik cx đc . Tks nhiều 

 

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 15:57

a.

\(u_n=\dfrac{1}{\left(2-1\right)\left(2+1\right)}+\dfrac{1}{\left(3-1\right)\left(3+1\right)}+...+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(n-2\right)n}+\dfrac{1}{\left(n-1\right)\left(n+1\right)}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{n-2}-\dfrac{1}{n}+\dfrac{1}{n-1}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(1+\dfrac{1}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\lim u_n=\lim\left(\dfrac{1}{2}\left(\dfrac{3}{2}-\dfrac{1}{n}-\dfrac{1}{n+1}\right)\right)=\dfrac{1}{2}.\dfrac{3}{2}=\dfrac{3}{4}\)

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:00

b.

\(u_n=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(=1-\dfrac{1}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(1-\dfrac{1}{n+1}\right)=1\)

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:02

c.

\(1+2+...+n=\dfrac{n\left(n+1\right)}{2}\)

\(\Rightarrow\dfrac{1}{1+2+...+n}=\dfrac{2}{n\left(n+1\right)}=\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(\Rightarrow u_n=1+\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+...+\dfrac{2}{n}-\dfrac{2}{n+1}\)

\(=1+1-\dfrac{2}{n+1}=2-\dfrac{2}{n+1}\)

\(\Rightarrow\lim u_n=\lim\left(2-\dfrac{2}{n+1}\right)=2\)

Nguyễn Việt Lâm
4 tháng 12 2021 lúc 16:07

d.

\(u_n=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{n^2}\right)\)

\(=\dfrac{\left(2^2-1\right)\left(3^2-1\right)...\left(n^2-1\right)}{2^2.3^2...n^2}\)

\(=\dfrac{1.3.2.4...\left(n-1\right)\left(n+1\right)}{2^2.3^2...n^2}\)

\(=\dfrac{1.2...\left(n-1\right)}{2.3...n}.\dfrac{3.4...\left(n+1\right)}{2.3...n}\)

\(=\dfrac{1}{n}.\dfrac{n+1}{2}=\dfrac{n+1}{2n}\)

\(\Rightarrow\lim u_n=\lim\left(\dfrac{n+1}{2n}\right)=\lim\left(\dfrac{1+\dfrac{1}{n}}{2}\right)=\dfrac{1}{2}\)


Các câu hỏi tương tự
Nguyễn Thùy Chi
Xem chi tiết
Big City Boy
Xem chi tiết
Hiếu Chuối
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Big City Boy
Xem chi tiết
An Trần
Xem chi tiết
Trần Hà Linh
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Pham Tien Dat
Xem chi tiết