Ta có: \(\left(\dfrac{4}{13}\cdot\dfrac{6}{5}+\dfrac{4}{13}\cdot\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\left(\dfrac{6}{5}+\dfrac{2}{5}\right)\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{4}{13}\cdot\dfrac{8}{5}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\dfrac{32}{65}\cdot\left(2x+1\right)^2=\dfrac{10}{13}\)
\(\Leftrightarrow\left(2x+1\right)^2=\dfrac{10}{13}:\dfrac{32}{65}=\dfrac{10}{13}\cdot\dfrac{65}{32}=\dfrac{25}{16}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=\dfrac{5}{4}\\2x+1=-\dfrac{5}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{5}{4}-1=\dfrac{1}{4}\\2x=-\dfrac{5}{4}-1=-\dfrac{9}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}:2=\dfrac{1}{8}\\x=-\dfrac{9}{4}:2=-\dfrac{9}{8}\end{matrix}\right.\)
Vậy: \(x\in\left\{\dfrac{1}{8};-\dfrac{9}{8}\right\}\)