\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{5}\left(1+\sqrt{3}\right)y=\sqrt{5}\\\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)x+\sqrt{5}\left(1+\sqrt{3}\right)y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{5}\left(1+\sqrt{3}\right)y=\sqrt{5}\\-2x+\sqrt{5}\left(1+\sqrt{3}\right)y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{3}\left(1+\sqrt{3}\right)y=\sqrt{5}\\3x=1+\sqrt{3}+\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1+\sqrt{3}+\sqrt{5}}{3}\\y=\frac{x\sqrt{5}-1}{1+\sqrt{3}}=\frac{\sqrt{5}+\sqrt{15}+2}{1+\sqrt{3}}\end{matrix}\right.\)