Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
x=2y+3-m\\
2x+y=3(m+2)\end{matrix}\right.\)
\(\Rightarrow 2(2y+3-m)+y=3(m+2)\)
\(\Leftrightarrow y=m\)
\(\Rightarrow x=2y+3-m=2m+3-m=m+3\)
Vậy HPT có nghiệm $(x,y)=(m+3,m)$
\(\Rightarrow S=x^2+y^2=(m+3)^2+m^2=2m^2+6m+9\)
\(=2(m+\frac{3}{2})^2+\frac{9}{2}\geq \frac{9}{2}\)
Vậy \(S_{\min}=\frac{9}{2}\Leftrightarrow (m+\frac{3}{2})^2=0\Leftrightarrow m=-\frac{3}{2}\)