Cho hệ bất phương trình\(\left\{{}\begin{matrix}x^2-3x-4\le0\\x^2-3\left|x\right|x-m^2+6m\ge0\end{matrix}\right.\) . Tìm m để hệ có nghiệm
Ký hiệu S là tập hợp nghiệm của bất phương trình \(x^2-\left(8m+1\right)x+15m^2+3m\le0\). Tìm điều kiện của m để khi biểu diễn trên trục số, độ dài của S lớn hơn 3
với giá trị nào của m thì hệ bất phương trình \(\left\{{}\begin{matrix}\left|x-m\right|>1\\x^2-5x+6\le0\end{matrix}\right.\) vô nghiệm
A. \(2\le m\le3\) B. \(m\ge3\)
C. \(2< m< 3\) D. \(m\le2\)
Tìm m để hệ phương trình có nghiệm
\(\left\{{}\begin{matrix}x^2-3x-4< 0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)
Giải bất phương trình, hệ phương trình
\(\dfrac{x^2-\left|x\right|-12}{x-3}=2x\)
\(\left\{{}\begin{matrix}y+y^2x=-6x^2\\1+x^3y^3=19x^3\end{matrix}\right.\)
Tìm m để hệ sau có nghiệm \(\left\{{}\begin{matrix}\sqrt{x^2+4}+2y=m\\x^2+4y^2=m-2\end{matrix}\right.\)
Tìm m để phương trình có nghiệm
\(\left\{{}\begin{matrix}3x^2-2xy-y^2=5\\x^2+xy+2y^2=m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
Tìm m để hệ phương trình (1) có nghiệm duy nhất sao cho S=\(x^2+y^2\)đạt giá trị nhỏ nhất
\(\left\{{}\begin{matrix}2x+y=3m+1\\3x+2y=2m-3\end{matrix}\right.\)
Với giá trị nào của m thì hệ phương trình có nghiệm (x;y) thoả mãn\(\left\{{}\begin{matrix}x< 1\\y< 6\end{matrix}\right.\)