Giải các hệ phương trình sau:
a) \(\left\{{}\begin{matrix}4x^2-4xy-14x-3y^2+y+10=0\\5\sqrt{xy}+2x+2y=6\sqrt{y}-8\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}2x^4+3x^2y+4x^2-2y^2+3y+2=0\\\sqrt{x\left(y-1\right)}+2y+2\sqrt{y-1}=3x+2\sqrt{x}+2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^6+3x^2-y^3-6y^2-15y-14=0\\\sqrt{xy+2x-y-2}+6x-2y=10\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
giải hệ:
a) \(\left\{{}\begin{matrix}\sqrt{x+3y}+\sqrt{x+y}=2\\\sqrt{x+y}+y-x=1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=4\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\\2x^2y+xy^2-4xy=2x-y\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2+xy=y^2-3y+2\\x^2-y^2=3\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}x^2+y^2+z^2+2xy-xz-zy=3\\x^2+y^2-2xy-xz+zy=-1\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x^2-y^2+5x-y+6=0\\x^2+\left(x-y\right)^2=2+\sqrt{6x+7}+2\sqrt{x+y+1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\sqrt{2}-y\sqrt{3}=1\\x+y\sqrt{3}=\sqrt{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\x+\left(\sqrt{2}+1\right)y=1\end{matrix}\right.\)
1. \(\left\{{}\begin{matrix}x+xy+y=11\\x^2+y^2-xy-2\left(x+y\right)=-31\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}xy-x+y=-3\\x^2+y^2-x+y+xy=6\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}x^2+4y^2=8\\x+2y=4\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2+6y=\frac{x}{y}-\sqrt{x-2y}\\\sqrt{x+\sqrt{x-2y}}=x+3y-2\end{matrix}\right.\)
Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^2+y^2=1\\x^2+y^2=1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}=2014\\\dfrac{1}{3x+2y}+\dfrac{1}{3y+2z}+\dfrac{1}{3z+2x}=\dfrac{1}{x+2y+3z}+\dfrac{1}{y+2x+3x}+\dfrac{1}{z+2x+3y}\end{matrix}\right.\)
Giai he pt: \(\left\{{}\begin{matrix}\left(x-y\right)^2+4=3y-5x+2\sqrt{\left(x+1\right)\left(y-1\right)}\\\frac{3xy-5y-6x+11}{\sqrt{x^3+1}}=5\end{matrix}\right.\)
giải hệ phương trình sau
\(\left\{{}\begin{matrix}x^3+x^2\left(y-1\right)-5\left(x+y\right)=5\\3\sqrt{1+2x^2}+2\sqrt{40+9y^2}=5\sqrt{11}\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}x^3-y^3-6x^2+13x-y=10\\\sqrt{2x+y+5}-\sqrt{3-x-y}=\left(2x-5\right)y+2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y-1}=2x-1\\x+\sqrt{x-1}+\sqrt{y}=2\end{matrix}\right.\)