Xét : \(\left(ax+bx\right)^2-\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2\)
\(=a^2y^2-2aybx+b^2x^2\)
\(=\left(ay-bx\right)^2\) \(\ge0\)
Dấu bằng xảy ra \(\Leftrightarrow ay=bx\)
\(\Rightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ã+by\right)^2\)