(2x+3)^2-2(2x+3)(2x-5)+(2x-5)^2=x^2+6x+64
=>x^2+6x+64=(2x+3-2x+5)^2
=>x^2+6x+64=64
=>x(x+6)=0
=>x=0 hoặc x=-6
(2x+3)^2-2(2x+3)(2x-5)+(2x-5)^2=x^2+6x+64
=>x^2+6x+64=(2x+3-2x+5)^2
=>x^2+6x+64=64
=>x(x+6)=0
=>x=0 hoặc x=-6
Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Bài 1 : tìm các giá trị của x biết :
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
c) \(x^2=-6x-8\)
d) \(\frac{\left(x+1\right)^2}{3}-\frac{\left(x-2\right)^2}{3}=\frac{2x+1}{2}-\frac{\left(x-3\right)^2}{6}\)
tim x biet
\(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\left(2x-1\right)\left(3x-1\right)-\left(3x-2\right)\left(2x-1\right)=3\)
Câu 1: Biết \(3x+2\left(5-x\right)=0\), giá trị của x là:
Câu 2: Giá trị của x thỏa mãn: \(2x.\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=3\) là:
Câu 3: Tính: \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) bằng:
Câu 4: Tính và thu gọn: \(3x^2\left(3x^2-2y^2\right)-\left(3x^2-2y^2\right)\left(3x^2+2y^2\right)\)
Câu 5: Biểu thức rút gọn và khai triển của R=\(\left(2x-3\right).\left(4+6x\right)-\left(6-3x\right)\left(4x-2\right)\) là:
Câu 1: Biểu thức rút gọn của: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\) là:
Câu 2: Cho A=\(3.\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)\) để có giá trị bằng 0 thì x bằng:
Câu 3: Tìm x biết: \(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
Câu 4: Tìm x biết: \(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
Câu 5: Giá trị của biểu thức A=\(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) với x=1;y=1,z=-1
Câu 6: Giá trị của x thỏa mãn \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\)
Caau 7: Giá trị x thỏa mãn: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) là:
Tìm GTNN của các biểu thức:
a) \(A=\left(x+8\right)^4+\left(x+6\right)^4\)
b) \(B=\left(0,5x^2+x\right)^2-3\left|0,5x^2+x\right|\)
c) \(C=\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
d) \(D=x^4-2x^3+3x^2-2x+1\)
e) E = \(x^4-6x^3+10x^2-6x+9\)
g) \(G=\left(x^2+x-6\right)\left(x^2+x+2\right)\)
Giải phương trình :
\(\dfrac{x+5}{x\left(2x-5\right)+2}+\dfrac{x+2}{x\left(2x-7\right)+3}=\dfrac{2x+7}{2x^2-7x+3}\)
\(GiảiBPT:\left(x-2\right)^2-x+3>\left(x-1\right)\left(x+3\right)-2x+5\)