Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Bài 3: Giải các phương trình sau:
a. 2x (x - 3) + 5(x - 3) = 0
b. \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)
c. \(\left(2x+5\right)^2=\left(x+2\right)^2f\))\(\left(2x+1\right)\left(3-x\right)\left(4-2x\right)=0\)
d. \(x^2-5x+6=0\)
e. \(2x^3+6x^2=x^2+3x\)
Câu 1: Biểu thức rút gọn của: \(\left(2x+y\right)\left(4x^2-2xy+y^2\right)\) là:
Câu 2: Cho A=\(3.\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)\) để có giá trị bằng 0 thì x bằng:
Câu 3: Tìm x biết: \(\left(5x-3\right)\left(7x+2\right)-35x\left(x-1\right)=42\)
Câu 4: Tìm x biết: \(\left(3x+5\right)\left(2x-1\right)+\left(5-6x\right)\left(x+2\right)=x\)
Câu 5: Giá trị của biểu thức A=\(\left(2x+y\right)\left(2z+y\right)+\left(x-y\right)\left(y-z\right)\) với x=1;y=1,z=-1
Câu 6: Giá trị của x thỏa mãn \(\left(10x+9\right).x-\left(5x-1\right)\left(2x+3\right)=8\)
Caau 7: Giá trị x thỏa mãn: \(x\left(x+1\right)\left(x+6\right)-x^3=5x\) là:
Bài 1 : tìm các giá trị của x biết :
a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)
b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)
c) \(x^2=-6x-8\)
d) \(\frac{\left(x+1\right)^2}{3}-\frac{\left(x-2\right)^2}{3}=\frac{2x+1}{2}-\frac{\left(x-3\right)^2}{6}\)
tim x biet
\(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(8x\left(2x+1\right)-4x\left(2x-3\right)=-40\)
\(\left(2x-1\right)\left(3x-1\right)-\left(3x-2\right)\left(2x-1\right)=3\)
Bài 1 : rút gọn các biểu thức sau
A = \(\left(3x+1\right)^2-2\left(3x+1\right)\left(5x+5\right)+\left(5x+5\right)^2\)
B = \(\left(a+b+c\right)^2\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-b-a\right)^2\)
C = \(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
Bài 2 : chứng minh các biểu thức sau không phụ thuộc vào biến x và y
A = \(\left(2x-1\right)\left(x^2+x-1\right)-\left(x-5\right)^2-2\left(x+1\right)\left(x^2-x+1\right)-7\left(x-2\right)\)
Rút gọn:
\(A=\dfrac{x}{5-x}+\left(\dfrac{x}{x^2-25}+\dfrac{5-x}{5x+x^2}\right):\dfrac{2x-5}{x^2+5x}\)
\(B=\left[\left(\dfrac{1}{x^2}+1\right)\cdot\dfrac{1}{1+2x+x^2}+\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{\left(1+x\right)^3}\right]:\dfrac{x-1}{x^3}\)
Giải các bất phương trình sau :
a) \(4x-8\ge3\left(3x-1\right)-2x+1\)
b) \(\left(x-3\right)\left(x+2\right)+\left(x+4\right)^2\le2x\left(x+5\right)+4\)
c) \(3x-\dfrac{x+2}{3}\le\dfrac{3\left(x-2\right)}{2}+5-x\)
d) \(x-\dfrac{x+2}{3}\ge3x-1+\dfrac{x}{2}\)
e) \(\dfrac{x\left(x+2\right)}{3}+\dfrac{\left(x-1\right)\left(x+2\right)}{2}\ge\dfrac{5\left(x+1\right)^2}{6}+1\)
f) \(\dfrac{x+5}{2012}+\dfrac{x+6}{2011}+\dfrac{x+7}{2010}>-3\)
Gpt:
a.\(\left(x^2-4x+3\right)^3+\left(x^2-7x+6\right)^3=\left(2x^2-11x+9\right)^3\)
b.\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2=0\)