\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)
\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)
\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)
\(=-6\cdot\dfrac{1}{27}\cdot\left[\dfrac{-4}{9}\cdot\left(\dfrac{-1}{2}-\dfrac{4}{3}\right)\right]\)
\(=\dfrac{-2}{9}\cdot\left[-\dfrac{4}{9}\cdot\dfrac{-11}{6}\right]\)
\(=\dfrac{-2}{9}\cdot\dfrac{44}{54}=\dfrac{-88}{432}=\dfrac{-11}{54}\)
Tính:
\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
giải phương trình..\(\dfrac{x\left(3-x\right)}{x+1}.\left(x+\dfrac{3-x}{x+1}\right)=2\)
Tìm các giá trị thực của tham số m để phương trình sau có nghiệm thực \(x^2+\dfrac{1}{x^2}-\left(m^2+m+2\right)\left(x+\dfrac{1}{x}\right)+m^3+2m+2\)
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)
A=\(\left[\dfrac{x^2+2}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right].\left(1-\dfrac{1}{x}-\dfrac{x}{x^2}\right)\)
a ) Tìm điều kiện xác định
b ) Rút gọn A
c) Tìm x để A=2
d) Tính A khi x =\(\sqrt{\sqrt{4-2\sqrt{3}}}\)
\(\left(\dfrac{4}{3}\right)^{5x-2}=\dfrac{64}{27}\)
Tìm tập xác định của hàm số:
1) y = \(\dfrac{2x-1}{x^3-6x^2+11x-6}\)
2) y = \(\dfrac{\sqrt{3-2x}}{\sqrt[3]{x+1}+1}\)
3) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x+1}{x+2}khi_x\ge0\\\dfrac{\sqrt[3]{2x+1}}{x-1}khix< 0\end{matrix}\right.\)
Gi úp mình với cảm ơn các bạn
M=-\(^{\left(x+\dfrac{1}{8^{ }}\right)26}\)-\(\left(x-y=\dfrac{3}{8}\right)442\)+5,98
26 va 442 la mu nha cac ban