\(\left(\dfrac{4}{3}\right)^{5x-2}=\dfrac{64}{27}\)
\(\Rightarrow\left(\dfrac{4}{3}\right)^{5x-2}=\left(\dfrac{4}{3}\right)^3\)
\(\Rightarrow5x-2=3\)
\(\Rightarrow5x=3+2\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=5:5\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(\left(\dfrac{4}{3}\right)^{5x-2}=\dfrac{64}{27}\)
\(\Rightarrow\left(\dfrac{4}{3}\right)^{5x-2}=\left(\dfrac{4}{3}\right)^3\)
\(\Rightarrow5x-2=3\)
\(\Rightarrow5x=3+2\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=5:5\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
Tính:
\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)\(N=\left(0,25\right)^{-1}\cdot\left(\dfrac{1}{4}\right)^{-2}\cdot\left(\dfrac{4}{3}\right)^{-2}\cdot\left(\dfrac{5}{4}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-3}\)
Tính giá trị của các biểu thức sau
1) \(A=1+2+2^2+...+2^{2015}\)
2) \(B=\left(\dfrac{1}{4}-1\right)\cdot\left(\dfrac{1}{9}-1\right)\cdot\left(\dfrac{1}{16}-1\right)\cdot\cdot\cdot\cdot\cdot\left(\dfrac{1}{400}-1\right)\)
3) \(C=\left(\dfrac{1}{4\cdot9}+\dfrac{1}{9\cdot14}+\dfrac{1}{14\cdot19}+...+\dfrac{1}{44\cdot49}\right)\cdot\dfrac{1-3-5-7-...-49}{89}\)
4) \(D=\dfrac{2^{12}\cdot3^5-4^6\cdot9^2}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{5^{10}\cdot7^3-25^5\cdot49^2}{\left(125\cdot7\right)^3+5^9\cdot14^3}\)
5) \(E=\dfrac{\dfrac{1}{2003}+\dfrac{1}{2004}-\dfrac{1}{2005}}{\dfrac{5}{2003}+\dfrac{5}{2004}-\dfrac{5}{2005}}-\dfrac{\dfrac{2}{2002}+\dfrac{2}{2003}-\dfrac{2}{2004}}{\dfrac{3}{2002}+\dfrac{3}{2003}-\dfrac{3}{2004}}\)
6) Cho 13+23+...+103=3025
Tính S= 23+43+63+...+203
\(\left(-3\right).2.\left(\dfrac{1}{3}\right)^3.\left[\left(\dfrac{-2}{3}^2\right).\left(\dfrac{-1}{2}-1\dfrac{1}{3}\right)\right]\) Giup minh voi![]()
Tìm x :
\(\left(\dfrac{1}{9}\right)^x=\left(\dfrac{1}{27}\right)^6\)
1) Cho \(\dfrac{x}{3}=\dfrac{y}{2}\) và x.\(y^2\)=324. Tìm x,y
2) Tìm các số tự nhiên x,y bik \(2^{x+1}.3^y=4^x.3^x\)
3) CMR nếu có tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) thì ta có \(\left(\dfrac{a-b}{c-d}\right)^4=\dfrac{a^4+b^4}{c^4+d^4}\)
4) Tính: B=\(\dfrac{27^{15}.5^3.8^4}{25^2.81^{11}.2^{11}}\)
Cho số thực a < 0 và hai tập hợp A = (-∞; 9a), B = (\(\dfrac{4}{a}\); +∞). Tìm a để A\(\cap\)B ≠ ∅
A. \(\left[{}\begin{matrix}a\ge3\\a< -4\end{matrix}\right.\)
B. \(\left[{}\begin{matrix}a\ge\dfrac{5}{2}\\a< -\dfrac{1}{3}\end{matrix}\right.\)
C. \(\left[{}\begin{matrix}a< \dfrac{5}{2}\\a\ge-\dfrac{1}{3}\end{matrix}\right.\)
D. -\(\dfrac{1}{3}\)≤ a ≤ \(\dfrac{5}{2}\)
A=\(\left[\dfrac{x^2+2}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right].\left(1-\dfrac{1}{x}-\dfrac{x}{x^2}\right)\)
a ) Tìm điều kiện xác định
b ) Rút gọn A
c) Tìm x để A=2
d) Tính A khi x =\(\sqrt{\sqrt{4-2\sqrt{3}}}\)
giải phương trình..\(\dfrac{x\left(3-x\right)}{x+1}.\left(x+\dfrac{3-x}{x+1}\right)=2\)
Tìm các giá trị thực của tham số m để phương trình sau có nghiệm thực \(x^2+\dfrac{1}{x^2}-\left(m^2+m+2\right)\left(x+\dfrac{1}{x}\right)+m^3+2m+2\)