1) Giải bất phương trình sau:
a) \(x^2+\sqrt{x+11}=11\) b) \(9+\sqrt{9+x}=x\)
2) Xét dấu:
a) \(f\left(x\right)=\frac{\left(x^2-1\right)\left(x-3\right)}{\left(x^2+1\right)\left(x^2-5x+4\right)}\) b) \(h\left(x\right)=\frac{1}{x^2-2x+3}-\frac{1}{x+2}\)
Xét dấu biểu thức sau f(x)=\(\frac{2x\left(x+1\right)\left(x-2\right)}{\left(x-3\right)\left(6-x\right)}\)
\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\ge\frac{3}{2}\) với abc=1
Bài 4: Giải các bất phương trình sau:
e. \(\left|x-1\right|>\frac{x+1}{2}\)
f. \(\left|x-2\right|< \frac{x}{2}\)
g. \(\left|2x-5\right|\le x+1\)
h. \(\left|2x+1\right|\le x\)
i. \(\left|x-2\right|>x+1\)
giải các phương trình sau
a. \(\left|\frac{4-x}{x-3}\right|=\left|\frac{2x+1}{2-x}\right|\)
b. \(10-6\left|x+1\right|=x^2-9x\)
c. \(\left|x^2-2x+3\right|=5-x\)
giải bpt
\(\left(\sqrt{x+4}-1\right)\sqrt{x+2}\ge\frac{x^3+4x^2+3x-2\left(x+3\right)\sqrt[3]{2x+3}}{\left(\sqrt[3]{2x+3}-3\right)\left(\sqrt{x+4}+1\right)}\)
Giải bpt sau:
\(\frac{\left(x-1\right)^3\left(x+2\right)^4\left(x-3\right)^5\left(x+6\right)}{x^2\left(x-7\right)^3}\le0\)
giải phương trình
1.\(3\sqrt{x^2-25}=\left(2x-1\right)\sqrt{\frac{x-5}{x+5}}\)
2.\(\sqrt{\left(3x-1\right)\left(3x^2-4x+1\right)}=x-1\)
1. Tìm m để hàm số \(y=\frac{x^2+1}{\sqrt{\left(m^2-1\right)x^2+2\left(m+1\right)x+5}}\) có tập xác định là R.
2. Cho \(a^2+4b^2=a^2b^2\) (a,b >0). Tìm giá trị nhỏ nhất của ab.