\(I=\int\limits^2_1\dfrac{\left(x+1\right)^2-2}{x+1}dx=\int\limits^2_1\left(x+1-\dfrac{2}{x+1}\right)dx\)
\(=\left(\dfrac{x^2}{2}+x-2ln\left|x+1\right|\right)|^2_1=\dfrac{5}{2}-2ln\dfrac{3}{2}\)
\(I=\int\limits^2_1\dfrac{\left(x+1\right)^2-2}{x+1}dx=\int\limits^2_1\left(x+1-\dfrac{2}{x+1}\right)dx\)
\(=\left(\dfrac{x^2}{2}+x-2ln\left|x+1\right|\right)|^2_1=\dfrac{5}{2}-2ln\dfrac{3}{2}\)
\(\int_0^{\sqrt{7}}\dfrac{x^3}{\sqrt[3]{x^2+1}}dx\)
\(\int_1^6\dfrac{\sqrt{x+3}+1}{x+2}dx\)
\(\int_1^2\)\(\dfrac{x-4}{x\left(x+1\right)}dx\)
Tính tích phân \(I=\int_1^e\dfrac{xln^2x}{\left(lnx+1\right)^2}dx\)
\(\int_0^1\)\(\dfrac{2x^3-3x^2+x-4}{x^2+2x+1}dx\)
49/005
Tính \(\int_1^2\frac{x}{3x+\sqrt{9x^2-1}}dx\)
Tính nguyên hàm của:
1, \(\int\)\(\dfrac{x^3}{x-2}dx\)
2, \(\int\)\(\dfrac{dx}{x\sqrt{x^2+1}}\)
3, \(\int\)\((\dfrac{5}{x}+\sqrt{x^3})dx\)
4, \(\int\)\(\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx\)
5, \(\int\)\(\dfrac{dx}{\sqrt{1-x^2}}\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên đoạn [1;2] thoả mãn \(f\left(1\right)=2\) và \(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2xf^2\left(x\right)\), ∀x ϵ [1;2]. Giá trị của \(\int_1^2f\left(x\right)dx\) bằng
A. \(1+\ln2\) B. \(1-\ln2\) C. \(\dfrac{1}{2}-\ln2\) D. \(\dfrac{1}{2}+\ln2\)
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
\(\int_1^{\infty}\)\(\frac{x\sqrt{2x-3}dx}{\sqrt[3]{x^7}+12x^4+3lnx}\)=?
mong các bạn giúp t vì t chưa có hướng giải