Rút gọn biểu thức
a) \(\sqrt{11-2\sqrt{10}}\)
b) \(\sqrt{9-2\sqrt{14}}\)
c) \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
g) \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)
h) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
k) \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
i) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Tính:
a) \(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5\)
b) \(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2\)
c) \(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)\)
d) \(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
e) \(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
a,\(\sqrt{1+2\sqrt{2}+\sqrt{11+6\sqrt{2}}}\)
b,\(\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}\)
c,\(\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{1-\dfrac{\sqrt{3}}{2}}\)
d,\(\sqrt{15+6\sqrt{6}}-\sqrt{21-6\sqrt{6}}\)
bài 1 tìm điều kiện có nghĩa của căn
1/ \(\frac{2}{\sqrt{x^2-4x+4}}\)
2/ \(\sqrt{\frac{-4}{2+x}}\)
3/ \(\sqrt{\frac{4}{2+x^2}}\)
bài 2 tìm x biết
1/ \(\sqrt{9x^2=2x+1}\)
bài 3 chứng minh rằng
1/ \(9+4\sqrt{5}=\left(\sqrt{5}+2\right)^2\)
2/ \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}=2\)
3/ \(\left(4+\sqrt{15}\right)\left(\sqrt{10}\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
Bài 1 :Chứng minh các đẳng thức :
a ) \(2\sqrt{2}\left(\sqrt{3}-2\right)\) + \(\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b ) \(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
c ) \(\sqrt{11-6\sqrt{2}}+\sqrt{11+6\sqrt{2}}=6\)
Bài 2 : Rút gọn các biểu thức sau :
a ) \(\frac{1}{\sqrt{5}+\sqrt{3}}-\frac{1}{\sqrt{5}-\sqrt{3}}\)
b ) \(\frac{\sqrt{4-2\sqrt{3}}}{\sqrt{6}-\sqrt{2}}\)
c ) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
Bài 3 : Rút gọn các biểu thức sau :
a ) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
b ) \(\left(\sqrt{28}-2\sqrt{3}+\sqrt{7}\right)\sqrt{7}+\sqrt{84}\)
c ) \(\left(\sqrt{6}+\sqrt{5}\right)^2-\sqrt{120}\)
d ) \(\left(\frac{1}{2}\sqrt{\frac{1}{2}}-\frac{3}{2}\sqrt{2}+\frac{4}{5}\sqrt{200}\right):\frac{1}{8}\)
bài 1) rút gọn
1) 5√\(\frac{1}{5}\) 2)\(\frac{12}{5}\)√\(\frac{5}{4}\) 3)\(\frac{30}{5\sqrt{6}}\) 4) \(\frac{20}{2\sqrt{5}}\) 5)\(\frac{2-\sqrt{2}}{\sqrt{2}}\) 6) \(\frac{11+\sqrt{11}}{1+\sqrt{ }11}\) 7) \(\frac{\sqrt{21-\sqrt{7}}}{1-\sqrt{3}}\) 8)\(\frac{\sqrt{2+\sqrt{3}}}{2+\sqrt{6}}\) 9)\(\frac{\sqrt{10-\sqrt{2}}}{\sqrt{5-}1}\) 10)\(\frac{2\sqrt{3}-3\sqrt{2}}{\sqrt{3}-\sqrt[]{2}}\)
bài 2) với các biểu thức đã cho là có nghĩa và rút gọn
1)\(\frac{x-\sqrt{x}}{\sqrt{x}-1}\) 2)\(\frac{x\sqrt{x}-2x}{2-\sqrt{x}}\) 3) \(\frac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\) 4) \(\frac{a\sqrt{b}-\sqrt{a}}{\sqrt{b}-b\sqrt{a}}\) 5) \(\frac{a-1}{\sqrt{a}+1}\) 6) \(\frac{4-x}{2\sqrt{x}-x}\) 7)\(\frac{a+1+2\sqrt{a}}{1+\sqrt{a}}\) 8)\(\frac{3\sqrt{x}-x}{3+2\sqrt{3x}-x}\) 9)\(\frac{y+12-4\sqrt{3y}}{y-12}\) 10)\(\frac{4\sqrt{x}-x-4}{x-4}\) 11)\(\frac{x+y-2\sqrt{xy}}{x\sqrt{y}-y\sqrt{x}}\)
Tính :
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\sqrt{9-4\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
Bài 1: Tính
\(\sqrt{3+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\\ \sqrt{12+6\sqrt{3}+\sqrt{12-6\sqrt{3}}}\\ \sqrt{9-4\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)
\(\sqrt{\sqrt{2}+2+\sqrt{4+\sqrt{9-\sqrt{32}}}}\\ \sqrt{6+2\sqrt{5}-\sqrt{29+12\sqrt{5}}}\\ \sqrt{8+\sqrt{8}+\sqrt{20}+\sqrt{40}}-\sqrt{\sqrt{49}+\sqrt{40}}\\ \sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
So sánh: (không dùng bảng số hay máy tính bỏ túi)
a) 2\(\sqrt{31}\) và 10
b) -3\(\sqrt{11}\) và -12
c) 6+\(2\sqrt{2}\) và 9
d) \(\sqrt{2}+\sqrt{3}\) và 3
e) 9+ \(4\sqrt{5}\) và 16
f) \(\sqrt{11}-\sqrt{3}\) và 2