a) \(10=2.5=2.\sqrt{25}< 2\sqrt{31}\) \(\Rightarrow\) \(2\sqrt{31}>10\)
b) \(-12=-3.4=-3\sqrt{16}< -3\sqrt{11}\) \(\Rightarrow\) \(-3\sqrt{11}>-12\)
c) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}< 6+\sqrt{9}\)
\(\Rightarrow\) \(6+2\sqrt{2}< 9\)
a) \(10=2.5=2.\sqrt{25}< 2\sqrt{31}\) \(\Rightarrow\) \(2\sqrt{31}>10\)
b) \(-12=-3.4=-3\sqrt{16}< -3\sqrt{11}\) \(\Rightarrow\) \(-3\sqrt{11}>-12\)
c) \(9=6+3=6+\sqrt{9}\)
\(6+2\sqrt{2}=6+\sqrt{8}< 6+\sqrt{9}\)
\(\Rightarrow\) \(6+2\sqrt{2}< 9\)
So sánh (không dùng bảng số hay máy tính bỏ túi)
a) \(6+2\sqrt{2}\) và 9
b) \(\sqrt{2}+\sqrt{3}\) và 3
c) \(9+4\sqrt{5}\) và 16
d) \(\sqrt{11}-\sqrt{3}\) và 2
Câu1: Rút gọn
\(a,x+\sqrt{\left(x+2\right)^2}\cdot\left(x-2\right)\\ b,\sqrt{m^2-6m+9-2m}\left(x>3\right)\\ c,1+\sqrt{\frac{\left(x-1\right)^2}{x-1}}\\ d,\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
Câu 2: So sánh
\(a,3và\sqrt{5}\\ \\ \\ b,2\sqrt{2}và3\sqrt{2}\\ \\ \\ c,-4\sqrt{5}và-6\sqrt{6}\\ \\ \\ d,2\sqrt{3}-5và\sqrt{3}-4\\ \\ \\e,A=\sqrt{2006}-\sqrt{2005}và\\ B=\sqrt{2005}-\sqrt{2004}\)
Câu 3: Rút gọn
\(a,\sqrt{16-2\sqrt{55}}\\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{14-6\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ c,\sqrt{36+12\sqrt{5}}\\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{29+12\sqrt{5}}\)
Câu4: Tìm đkxđ
\(a,\sqrt{x^2-9}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ b,\sqrt{x^2-3x+2}\)
\(c,\frac{\sqrt{x+3}}{\sqrt{5-x}}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ d,\sqrt{\frac{x+3}{5-x}}\)
So sánh :
- 10 và \(-2\sqrt{31}\)
\(2\sqrt{3}\) - 5 và \(\sqrt{5}\) - 4
2 + \(\sqrt{5}\) và 3 + \(\sqrt{2}\)
Bài 1: So sánh:
a, \(2\sqrt{31}\) và 10
b, \(2+\sqrt{3}\) và \(3+\sqrt{2}\)
c, \(\sqrt{21}+\sqrt{10}\) và \(\sqrt{6}+\sqrt{35}\)
d, \(\sqrt{39}+\sqrt{22}\) và \(\sqrt{26}+\sqrt{33}\)
Bài 2 : Giải các phương trình sau :
a, \(\sqrt{3x+1}=\sqrt{10}\)
b, \(\sqrt{x-7}+3=0\)
c, \(\sqrt{x^2-10x+25}\)\(=7-2x\)
d, \(\sqrt{x^2-2x+1}=\sqrt{6+4\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)
e, \(\sqrt{x^2-6x+9}=\sqrt{4x^2+4x+1}\)
Mọi người giúp em với nha !!
Mọi người biết câu nào thì giúp em câu đó cũng được.
bài 1 Tính giá trị biểu thức:
a)\(\sqrt{1,44}+3\sqrt{1,69}\)
b)\(\sqrt{0,04}+2\sqrt{0,25}\)
bài 2 bài 2 so sánh
a) 2\(\sqrt{31}\) và 10
b) \(\sqrt{15}-1\) và \(\sqrt{10}\)
a,\(\sqrt{22+12\sqrt{2}}\)
b,\(\sqrt{\dfrac{5+2\sqrt{6}}{2}}\)
c,\(\sqrt{30+4\sqrt{2}\sqrt{7}}\)
d,\(\sqrt{5+2\sqrt{2-\sqrt{9-4\sqrt{2}}}}\)
e,\(\sqrt{1+2\sqrt{\sqrt{2+\sqrt{11+6\sqrt{2}}}}}\)
f,\(\sqrt{1+\dfrac{\sqrt{3}}{2}+\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)
g,\(\sqrt{10-2\sqrt{21}}+\sqrt{4+2\sqrt{3}}\)
Rút gọn biểu thức
a) \(\sqrt{11-2\sqrt{10}}\)
b) \(\sqrt{9-2\sqrt{14}}\)
c) \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)
d) \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
e) \(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\)
g) \(\sqrt{3}+\sqrt{11+6\sqrt{2}}+\sqrt{5+2\sqrt{6}}\)
h) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
k) \(\sqrt{94-42\sqrt{5}}-\sqrt{94+42\sqrt{5}}\)
i) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
Tính:
a) \(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5\)
b) \(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2\)
c) \(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)\)
d) \(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
e) \(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
Tính :
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
b) \(\sqrt{9-4\sqrt{5}}+\sqrt{6+2\sqrt{5}}\)
c) \(\sqrt{9-4\sqrt{2}}-\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)