a) \(=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)
\(=x^4-2x^3-2x^2+8\)
\(=x^3\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x^3-2x-4\right)\left(x-2\right)\)
\(=\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\left(x-2\right)\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)
b) \(=x^4-x+2019\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)\
c)\(x^4+2x^3+5x^2+4x-5\\=x^4+x^3+x^3-x^2+x^2+5x^2-x+5x-5\\ =x^2\left(x^2+x-1\right)+x\left(x^2+x-1\right)+5\left(x^2+x-1\right)=\left(x^2+x-1\right)\left(x^2+x+5\right)\)