Bài 6: Hệ thức Vi-et và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hoàng

I. Cho phương trình : \(mx^2-\left(m+3\right)x+2m+1=0\)

Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\)thỏa \(\left|x_1-x_2\right|=2\)

II. Cho phương trình \(2x^2+\left(2m-1\right)x+m-1=0\)

a) Tìm m để phương trình có 2 nghiệm phân biệt \(x_1,x_2\)thỏa \(3x_1-4x_2=11\)

b) Tìm hệ thức liên hệ giữa \(x_1,x_2\) độc lập với m

Akai Haruma
12 tháng 1 2019 lúc 22:26

Bài I:

Trước tiên, để pt có thể có 2 nghiệm thì $m\neq 0$

PT có 2 nghiệm phân biệt \(\Leftrightarrow \Delta=(m+3)^2-4m(2m+1)>0\)

\(\Leftrightarrow -7m^2+2m+9>0\)

\(\Leftrightarrow -1< m< \frac{9}{7}\)

Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{m+3}{m}\\ x_1x_2=\frac{2m+1}{m}\end{matrix}\right.\)

Khi đó:
\(|x_1-x_2|=\sqrt{(x_1-x_2)^2}=\sqrt{x_1^2-2x_1x_2+x_2^2}=\sqrt{(x_1^2+2x_1x_2+x_2^2)-4x_1x_2}\)

\(=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{\frac{(m+3)^2}{m^2}-\frac{4(2m+1)}{m}}\)

\(=\sqrt{\frac{-7m^2+2m+9}{m^2}}\)

Để \(|x_1-x_2|=2\Leftrightarrow \sqrt{\frac{-7m^2+2m+9}{m^2}}=2\)

\(\Rightarrow \frac{-7m^2+2m+9}{m^2}=4\Rightarrow 11m^2-2m-9=0\)

\(\Rightarrow \left[\begin{matrix} m=1\\ m=-\frac{9}{11}\end{matrix}\right.\) (đều thỏa mãn)

Vậy...........

Akai Haruma
12 tháng 1 2019 lúc 23:08

Câu II:

Để pt có 2 nghiệm pb thì:

\(\Delta=(2m-1)^2-8(m-1)>0\)

\(\Leftrightarrow 4m^2-12m+9>0\Leftrightarrow (2m-3)^2>0\Leftrightarrow m\neq \frac{3}{2}\)

Áp dụng hệ thức Vi-et: \(\left\{\begin{matrix} x_1+x_2=\frac{1-2m}{2}\\ x_1x_2=\frac{m-1}{2}\end{matrix}\right.(*)\)

a) Khi đó: \(3x_1-4x_2=11\)

\(\Leftrightarrow 7x_1-4(x_1+x_2)=11\)

\(\Leftrightarrow 7x_1=11+4(x_1+x_2)=11+2(1-2m)=13-4m\)

\(\Leftrightarrow x_1=\frac{13-4m}{7}\)

\(\Rightarrow x_2=\frac{1-2m}{2}-x_1=\frac{-19-6m}{14}\)

Suy ra:

\(\frac{m-1}{2}=x_1x_2=\frac{13-4m}{7}.\frac{-19-6m}{14}\)

\(\Leftrightarrow 49(m-1)=(13-4m)(-19-6m)\)

\(\Leftrightarrow 24m^2-51m-198=0\Rightarrow m=\frac{33}{8}\) hoặc $m=-2$ (đều thỏa mãn)

b)

Từ $(*)$ \(\Rightarrow \left\{\begin{matrix} 2(x_1+x_2)=1-2m\\ 4x_1x_2=2(m-1)\end{matrix}\right.\)

\(\Rightarrow 2(x_1+x_2)+4x_1x_2=1-2m+2(m-1)=-1\)

\(\Rightarrow 2(x_1+x_2)+4x_1x_2+1=0\)

Đây chính là hệ thức liên hệ giữa $x_1,x_2$ độc lập với $m$


Các câu hỏi tương tự
Chii Phương
Xem chi tiết
KYAN Gaming
Xem chi tiết
sky12
Xem chi tiết
 Huyền Trang
Xem chi tiết
Lê Hoàng Anh
Xem chi tiết
KYAN Gaming
Xem chi tiết
Hoàng
Xem chi tiết
Ymzk
Xem chi tiết
Hải Yến Lê
Xem chi tiết