Cho \(\Delta ABC\) vuông tạ A có AB = 6 cm và BC = 12 cm
a. Tính độ dài cạnh AC và số đo các góc B, C
b. tia phân giác của góc B cắt cạnh AC tại D, giải tam giác vuông ABD
c. Từ D kẻ DE vuông góc BC (E thuộc BC). Không dùng số đo, chứng minh rằng \(\dfrac{S_{EDC}}{S_{ABC}}=tan^2\dfrac{B}{2}\)
Cho tam giác ABC vuông tại A (Ab > AC), đường cao AH(H thuộc BC), Trên tia đối của tia CB lấy điểm M sao cho HM=HA. Qua điểm M kẻ đường thẳng vuông góc với MB cắt đường thẳng AB tại N. Gọi P là trung điêmr của CN. Tia AP cắt đường thẳng BC tại Q. Chứng minh: a) Tam giác NCB đồng dạng tam giác MAB
Cho tam giác ABC vuông tại A , đường cao AH ; biết AB= 9cm ; AC = 12cm . a) Tính BC , AH . b) Tính số đo góc B ( làm tròn đến phút ) c) Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt AC tại D . Chứng minh 2AC.DC = BC2
Cho △ABC vuông tại A. biết AB = 3 cm, BC = 5 cm.
a) Giải △ABC vuông (số đo góc làm tròn đến độ)
b) Từ B kẻ đường thắng vuông góc với BC, đường thẳng này cắt AC tại D. Tính AD, BD.
c) Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD=BE.BC
Cho tam giác ABC vuông tại A có đường cao AH, biết AB=15, AC= 20cm.
a) Tính BC, AH.
b) Trên đonạ HC lấy D sao cho HD=HB. Tính tan góc ADH và chứng minh: HD.HC=HA^2
c) Trên tia AH lấy điểm E sao cho H là trung điểm của AE. Đường thẳng ED cắt AC tại F. Gọi O là trung điểm của CD. Chứng minh HF vuông góc FO.
d) Đoạn HF cắt AD tại S. Tia CS cắt AH tại K và cắt AB tại M. Chứng minh: AB/AM +AD/AS = AE/AK
Cho tam giác ABC có AB= 12 cm , AC =16 cm . Từ B kẻ đường thẳng vuông góc với BC , đường thẳng này cắt đường thẳng AC tại E . a) Tính các cạnh của tam giác BCE b) Tính góc BEA( làm tròn lên độ) c) lấy điểm F nằm giữa B và E . TỪ b kẻ BH vuông góc với CF, H thuộc CF . CMR : tam giác CEF đồng dạng vs tma giác CHA
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.
Bài 3 . Cho tam giác ABC vuông tại A có AB=5cm ;BC=13cm .
a) Tính tỉ số lượng giác của góc ACB .
b) Vẽ hai phân giác BE, CF cắt nhau tại I. Tính AE,EC , AF,BF và số đo góc BIC .
c) Kẻ IH vuông góc AB ;IK vuông góc AC . Chứng tỏ rằng AHIK là hình vuông.