Bài 3: Tính chất đường phân giác của tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Hình bình hành ABCD có độ dài cạnh AB = a = 12,5 cm, BC = b = 7,25 cm. Đường phân giác của góc B cắt đường chéo AC tại E, đường phân giác của góc D cắt đường chéo AC tại F (h.bs.3)

Hãy tính độ dài đường chéo AC, biết EF = m = 3,45 cm

(Tính chính xác đến hai chữ số thập phân)

Dương Nguyễn
5 tháng 5 2017 lúc 20:54

Ta có:

\(\widehat{ABC}=\widehat{ADC}\) và AD = BC = b = 7,25cm vì ABCD là hình bình hành.

Xét hai tam giác ADF và CBE ta có:

\(\widehat{ABC}=\widehat{ADC}\) (cmt)

AD = BC (cmt)

\(\widehat{DAF}=\widehat{BCE}\) (2 góc so le trong)

Vậy \(\Delta ADF=\Delta CBE\) (g-c-g).

=> AF = CE.

Cho AF = CE = x.

Áp dụng tính chất của đường phân giác BE trong tam giác ABC ta có:

\(\dfrac{AB}{BC}=\dfrac{AE}{CE}=\dfrac{AF+FE}{CE}\)

=> \(\dfrac{a}{b}=\dfrac{x+m}{x}=>x=\dfrac{mb}{a-b}\)= \(\dfrac{3,45.7,25}{12,5-7,25}=\dfrac{667}{140}\)

=> AC = \(2x+m=2.\dfrac{667}{140}+3,45=\dfrac{1817}{140}\approx12,98\)

Vậy AC \(\approx12,98\) cm.

Nguyen Thuy Hoa
4 tháng 7 2017 lúc 16:27

Tính chất đường phân giác của tam giác


Các câu hỏi tương tự
Trần Thiên Anh
Xem chi tiết
Ngọc
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thị hồng vi Vũ
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sơn
Xem chi tiết