\(y=f\left(x\right)=-x^2+2x+m-4\)
\(f\left(-1\right)=m-7;f\left(2\right)=m-4;f\left(1\right)=m-3\)
\(\Rightarrow miny=f\left(1\right)=m-3=3\Leftrightarrow m=6\)
\(y=f\left(x\right)=-x^2+2x+m-4\)
\(f\left(-1\right)=m-7;f\left(2\right)=m-4;f\left(1\right)=m-3\)
\(\Rightarrow miny=f\left(1\right)=m-3=3\Leftrightarrow m=6\)
Cho hàm số \(y=x^2-\left(m-\sqrt{m^2-16}\right)x+2m+2\sqrt{m^2-16}\) . Gọi GTLN , GTNN của hàm số trên [2:3] lần lượt là \(y_1,y_2\) . Số giá trị của tham số m để \(y_1-y_2=3\) là bao nhiêu
Hàm số y= ax^2 + bx + c ( a#0) đạt GTLN = 1/4 tại x = 3/2 và tổng lập phương các nghiệm của phương trình y =0 bằng 9. Tính P =abc.
tập xác định của hàm số \(y=\sqrt{x-2m}-\sqrt{4-2x}\) là \([1;2]\) khi và chỉ khi m=?
(P): y= (1 - m)x2 - mx - 3
a) tìm m để hàm số đạt GTLN
b) Vẽ (P) ứng mới m= -1
c) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : x2 - 1/2x -k = 0
d) Dùng đồ thị để biện luận theo k số nghiệm của phương trình : | 2x2 + x - 3 | = k
Cho hàm số \(y=x^2-2x+4m-2\)(m là tham số).
1) Tìm các giá trị của m để đồ thị hàm số cắt đường thẳng y=x+2 tại hai điểm có hoành độ trái dấu.
2) Tìm các giá trị của m để hàm số đạt GTLN trên \(\left[-2;2\right]\) bằng 2.
1.Tìm pt parabol y=ax2+bx +3(a≠0)khi biết:
a. Hàm số y=f(x) đạt cực đại bằng 12 tại x=3
b. Parabol tiếp xúc với trục hoành tại x=-1
c. Parabol cắt trục hoành tại hai điểm M(-1;0)và N(-3;0)
d. Parabol qua điểm E(-1;9)và có trục đối xứng là x=-2
2. Xác định hàm số bậc 2 y=ax2+ bx+c(a≠0)biết rằng:
a. Hàm số triệt tiêu khi x=8 và đạt cực tiểu bằng -12 khi x=6
b. Hàm số có giá trị bằng -3 khi x= -1 và đạt cực đại bằng 13/4 khi x=3/2
3. Tìm pt của parabol y= ax2+bx+c(a≠0) biết:
a. Parabol qua 2 điểm A(2;-5);B(-1;16) và có trục đối xứng x=4
b. Parabol cắt trục hoành tại C(1;0) cắt trục tung tại D(0;5) và có trục đối xứng x=3
hàm số y = x2 +(m+1)x +3 đồng biến trên (1;\(+\infty\) ) khi giá trị m thõa........
Cho hàm số y=x2-2x+4 có đồ thị (P). Tìm GTLN, GTNN của hàm số.
a, Lập bảng biến thiên, vẽ đồ thị (P) của hàm số : y = - x^2 + 4x - 3
b, Dựa vào đồ thị, hãy:
+ Tìm x để y > 0 ; y < 0;
+ Tìm max, min của hàm số trên đoạn [0;4].
+ Biện luận theo m số nghiệm của pt x^2 - 4x = m
+Tìm k để pt -x^2 + 4x = k có nghiệm thỏa mãn [-1;3]