Gọi thời gian chảy đầy bể vòi 1 là \(x\left(h\right)\)
Gọi thời gian chảy đầy bể vòi 2 là \(y\left(h\right)\)
Một giờ thì vòi 1 chảy được: \(\dfrac{1}{x}\) (bể)
Một giờ thì vòi 2 chảy được: \(\dfrac{1}{y}\) (bể)
Một giờ thì 2 vòi chảy được: \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) bể
Theo đề bài, ta có:
Cả 2 vòi cùng chảy trong 6 giờ thì đầy bể nên mỗi giờ cả hai vòi cùng chảy được \(\dfrac{1}{6}\) nên ta có phương trình:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\left(1\right)\)
Trong 2 giờ vòi 1 chảy được \(\dfrac{2}{x}\) bể, trong 3 giờ vòi 2 chảy được \(\dfrac{3}{x}\) bể. Nếu để riêng vòi thứ nhất chảy trong 2 giờ, sau đó đóng lại va mở vòi thứ hai chảy tiếp trong 3 giờ nữa thì được \(\dfrac{2}{5}\) bể nên ta có phương trình:\(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) ta có hệ phương trình:\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow...\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)
Vậy thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là 10 giờ và 15 giờ.
Cái này thì mình không chắc là đúng hoàn toàn vì có người vẫn ra vòi 1 là 30 giờ. Chúc cậu học tốt ^_^