Gọi (I) làm trong y là lượng công việc mà tổ 1h
Mà tổ (II) cùng làm với nhau trong 11 công việc nên ta có phương trình:
(1)
Mặt khác 4h thì tổ (II) làm nốt trong 4(x+y)+10y=14(x+y)+10y=1 (1) và phương trình x=1/ 60 và ⇒⇒ Tổ 60h thì xong công việc.
Tổ 15h thì xong công việc.
Bn tham khảo nha
Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)
Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:
\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)
\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng