Gọi x (km/h) là vận tốc của xe chạy nhanh, y (km/h) là vận tốc xe chạy chậm.
Theo đề : Hai xe khởi hành cùng lúc, đi ngược chiều và gặp nhau sau 5h, ta có :
\(5\left(x+y\right)=400\Leftrightarrow x+y=80\)(1)
Theo đề vế sau, xe đi chậm đến lúc gặp nhau sau 5h22' \(=\dfrac{161}{30}\left(h\right)\)
=> Xe nhanh đi hết \(\dfrac{161}{30}-\dfrac{2}{3}=\dfrac{141}{30}\left(h\right)\)
\(\Leftrightarrow\dfrac{141}{30}x+\dfrac{161}{30}y=400\left(2\right)\)
(1) , (2) Ta có hpt :
\(\left\{{}\begin{matrix}x+y=80\\\dfrac{141}{30}x+\dfrac{161}{30}y=400\end{matrix}\right.\)
Giải hệ phương trình ta được: \(\left\{{}\begin{matrix}x=44\\y=36\end{matrix}\right.\)
Vậy xe nhanh đi vs vận tốc 44 km/h, xe chậm 36 km/h.