- Gọi thời gian mỗi đội hoàn thành công việc là x; y ( ngày ; x,y > 8 )
- Một ngày đội 1 làm được số phần công việc là : \(\dfrac{1}{x}\) ( phần )
- Một ngày đội 2 làm được số phần công việc là : \(\dfrac{1}{y}\) ( phần )
=> Một ngày hai đội làm được số phần công việc là : \(\dfrac{1}{x}+\dfrac{1}{y}\) ( phần )
Mà nếu làm chung 8 ngày sẽ xong công việc .
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\left(I\right)\)
- Lại có nếu làm riêng đội 1 nhanh hơn đội 2 12 ngày .
\(\Rightarrow-x+y=12\left(II\right)\)
- Từ 1 và 2 ta được hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\-x+y=12\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=24\\x=12\end{matrix}\right.\) ( TM )
Vậy ...
Gọi số ngày hoàn thành công việc riêng của đội 1 là a (a>0) (ngày)
=> Số ngày hoàn thành công việc riêng của đội 2 là a + 12 (ngày)
Số công việc mỗi ngày của đội 1: \(\dfrac{1}{a}\) (công việc)
Số công việc mỗi ngày của đội 2: \(\dfrac{1}{a+12}\) (công việc)
Theo bài ta có
\(8.\left(\dfrac{1}{a}+\dfrac{1}{a+12}\right)=1\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{a+12}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{a+12}{a\left(a+12\right)}+\dfrac{a}{a\left(a+12\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{2a+12}{a^2+12a}=\dfrac{1}{8}\)
\(\Leftrightarrow16a+96=a^2+12a\)
\(\Leftrightarrow a^2-4a-96=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=12\\a=-8\left(loại\right)\end{matrix}\right.\)
Vậy số ngày hoàn thành công việc riêng của đội 1 là 12 ngày, đội 2 là 24 ngày