Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Vy Oanh

Gọi \(x_1,x_2\) là nghiệm của phương trình \(x^2+2019x+2=0\) , \(x_3,x_4\) là nghiệm của phương trình \(x^2+2020x+2=0\).Tính gtbt \(Q=\left(x_1+x_3\right)\left(x_2-x_3\right)\left(x_1+x_4\right)\left(x_2-x_4\right)\)

Nguyễn Việt Lâm
5 tháng 5 2019 lúc 8:53

\(\left\{{}\begin{matrix}x_1+x_2=-2019\\x_1x_2=2\end{matrix}\right.\) \(\left\{{}\begin{matrix}x_3+x_4=-2020\\x_3x_4=2\end{matrix}\right.\)

\(Q=\left(x_1+x_3\right)\left(x_1+x_4\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\)

\(Q=\left(x_1^2+x_1x_4+x_1x_3+x_3x_4\right)\left(x_2^2-x_2x_4-x_2x_3+x_3x_4\right)\)

\(Q=\left(x_1^2+x_1\left(x_3+x_4\right)+x_3x_4\right)\left(x_2^2-x_2\left(x_3+x_4\right)+x_3x_4\right)\)

\(Q=\left(x_1^2-2020x_1+2\right)\left(x_2^2+2020x_2+2\right)\)

Mặt khác do \(x_1\); \(x_2\) là nghiệm của \(x^2+2019x+2=0\) nên:

\(\left\{{}\begin{matrix}x_1^2+2019x_1+2=0\\x_2^2+2019x_2+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2+2=-2019x_1\\x_2^2+2=-2019x_2\end{matrix}\right.\)

\(\Rightarrow Q=\left(-2019x_1-2020x_1\right)\left(-2019x_2+2020x_2\right)\)

\(Q=-4039x_1.x_2=-4039.2=-8078\)


Các câu hỏi tương tự
𝓓𝓾𝔂 𝓐𝓷𝓱
Xem chi tiết
Nguyễn Huy Đạt
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
dam thu a
Xem chi tiết
dam thu a
Xem chi tiết
Đừng gọi tôi là Jung Hae...
Xem chi tiết
Núi non tình yêu thuần k...
Xem chi tiết
abcd
Xem chi tiết
fghj
Xem chi tiết