Xét hàm \(f\left(x\right)=\frac{1}{4}x^4-14x^2+48x+m-30\)
\(f'\left(x\right)=x^3-28x+48=\left(2-x\right)\left(4-x\right)\left(x+6\right)\ge0\) ; \(\forall x\in\left[0;2\right]\)
\(\Rightarrow y=\left|f\left(x\right)\right|\) đạt max tại 1 trong 2 đầu mút
\(y\left(0\right)=\left|m-30\right|\) ; \(y\left(2\right)=\left|m+14\right|\)
TH1: \(m\ge30\Rightarrow y_{max}=y\left(2\right)=\left|m+14\right|=m+14\le30\)
\(\Rightarrow m\le16\) (ktm do \(m\ge30\))
TH2: \(m\le-14\Rightarrow y_{max}=\left|m-30\right|=30-m\le30\)
\(\Rightarrow m\ge0\) (ko thỏa mãn)
TH3: \(-14< m< 30\Rightarrow\left\{{}\begin{matrix}y\left(0\right)=30-m\\y\left(2\right)=m+14\end{matrix}\right.\)
- Nếu \(y_{max}=y\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}30-m\ge m+14\\30-m\le30\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\le8\\m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le8\)
- Nếu \(y_{max}=y\left(2\right)\Rightarrow\left\{{}\begin{matrix}m+14\ge30-m\\m+14\le30\end{matrix}\right.\) \(\Rightarrow8\le m\le16\)
Vậy \(0\le m\le16\)