Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quân Trương

Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là 

A.6 

B.2 

C.1 

D.4

 

Hoàng Tử Hà
4 tháng 4 2021 lúc 0:34

Bạn tham khảo ạ!

Cho hàm số f(x) = \(\dfrac{x+m}{x+1}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho \(... - Hoc24

Còn nếu chưa hiểu cách làm thì bạn có thể hỏi anh Lâm hoặc chính người làm bài này :)

Akai Haruma
4 tháng 4 2021 lúc 2:16

Lời giải:

Nếu $m=1$ thì hàm $f(x)=1$ là hàm hằng thì không có cực trị.

Nếu $m\neq 1$;

$f'(x)=\frac{1-m}{(x+1)^2}$. $m>1$ thì hàm nghịch biến trên $[0;1]$, mà $m< 1$ thì hàm số đồng biến trên $[0;1]$

Từ đó suy ra hàm số đạt cực trị tại biên, tức là $(f_{\min}, f_{\max})=(f(1),f(0))=(m, \frac{m+1}{2})$ và hoán vị.

Giờ ta đi giải PT:

$|m|+|\frac{m+1}{2}|=2$

Dễ dàng giải ra $m=1$ hoặc $m=\frac{-5}{3}$

Do đó đáp án là B.


Các câu hỏi tương tự
Minh Nguyệt
Xem chi tiết
erosennin
Xem chi tiết
Rhider
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
D.Công Thiện
Xem chi tiết
erosennin
Xem chi tiết
Quân Trương
Xem chi tiết
Nguyễn Minh Đức
Xem chi tiết