Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 - 1) + m(x2 - 1) - 6(x - 1) ≥ 0 đúng với mọi x ∈ R. Tổng giá trị của tất cả các phần tử thuộc S bằng bao nhiêu ?
1. Biết rằng tập nghiệm của bpt \(\sqrt{2x-4}-2\sqrt{2-x}\ge\dfrac{6x-4}{5\sqrt{x^2+1}}\) là \(\left[a;b\right]\) . Tính P=3a-2b
2. Tính tổng các giá trị nguyên dương của m để tập nghiệm của bpt \(\sqrt{\dfrac{m}{72}x^2+1}< \sqrt{x}\) có chứa đúng 2 số nguyên
Cho bất phương trình \(\left(m^2-4\right)x^2+\left(m-2\right)x+1< 0\). Tìm tất cả các giá trị tham số m lm bất pt vô nghiệm có dạng \((-\infty;4]\cup[b;+\infty)\). Tính giá trị a.b
Tìm tất cả các giá trị của tham số m để bất phương trình( m - 1) x^2-2x + m + 1> 0 nghiệm đúng với mọi x> 0
tìm các giá trị của m để bất phương trình : (m - 1)x2 - 2(m + 1)x + 3(m - 2) > 0 nghiệm đúng với mọi x thuộc R
tìm các giá trị m sao cho phương trình : x4 + (1 - 2m)x2 + m2 - 1 = 0 : a) vô nghiệm ; b) có 2 nghiệm phân biệt ; c) có 4 nghiệm phân biệt .
1.gọi S là tập nghiệm của bpt \(\frac{x^2+x+3}{x^2-4}\ge1\). Khi đó S\(\sqcap\)(-2;2) là tập nào?
2. tìm m để bpt \(5x^2-x+m\le0\) vô nghiệm?
3. cho hàm số f(x)=\(X^2+2x+m\).Với giá trị nào của tham số m thì f(x)\(\ge0,\forall x\in R\)
tìm các giá trị m sao cho phương trình : x4 + (1 - 2m)x2 + m2 - 1 = 0 : a) vô nghiệm ; b) có 2 nghiệm phân biệt ; c) có 4 nghiệm phân biệt .
Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm