Do vai trò của x;y;z là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x\ge y\ge z\)
Khi đó 3 số được viết lại: \(\left(x-y\right)^2;\left(y-z\right)^2;\left(x-z\right)^2\)
\(x\ge y\ge z\Rightarrow\left\{{}\begin{matrix}x-y\ge0\\y-z\ge0\\x-z\ge0\end{matrix}\right.\) mà \(x-z=x-y+y-z\Rightarrow\left\{{}\begin{matrix}x-z\ge x-y\\x-z\ge y-z\end{matrix}\right.\)
Đặt \(\sqrt{m}=min\left\{x-y;y-z\right\}\Rightarrow\left\{{}\begin{matrix}x-y\ge\sqrt{m}\\y-z\ge\sqrt{m}\end{matrix}\right.\)
\(\Rightarrow x-z=x-y+y-z\ge2\sqrt{m}\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-y\right)^2\ge m\\\left(y-z\right)^2\ge m\\\left(x-z\right)^2\ge4m\end{matrix}\right.\) \(\Rightarrow6m\le\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\)
\(\Leftrightarrow6m\le2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\)
\(\Leftrightarrow6m\le2\left(x^2+y^2+z^2\right)-\left[\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)\right]\)
\(\Leftrightarrow6m\le3\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow m\le\frac{1}{2}\left(x^2+y^2+z^2\right)\)