\(y'=x^2-2x+2\)
Gọi tiếp tuyến d tại \(M\left(a;b\right)\) có phương trình:
\(y=\left(a^2-2a+2\right)\left(x-a\right)+\frac{1}{3}a^3-a^2+2a+1\)
Giao của d với Ox và Oy lần lượt là \(\left\{{}\begin{matrix}A\left(\frac{2a^3-3a^2-3}{3\left(a^2-2a+2\right)};0\right)\\B\left(0;\frac{2a^3-3a^2-3}{-3}\right)\end{matrix}\right.\)
\(OA^2=OB^2\Leftrightarrow\frac{\left(2a^3-3a^2-3\right)^2}{9\left(a^2-2a+2\right)^2}=\frac{\left(2a^2-3a^2-3\right)^2}{9}\)
\(\Leftrightarrow\left(a^2-2a+2\right)^2=1\) \(\Leftrightarrow a^2-2a+1=0\Rightarrow a=1\)
Phương trình tiếp tuyến: \(y=x+\frac{4}{3}\)