Đa giác. Diện tích của đa giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Võ

Gọi a,b,c,d theo thứ tự là độ dài các cạnh AB,BC,CD,DA của tứ giác ABCD , S và p theo thứ tự là diện tích và nửa chu vi của tứ giác đó a CMR S<= 1/2(ab+cd) b. CMR 4S<= (a+c)(b+d)<=p^2 c. CMR S<= a^2+b^2+c^2+d^2/4

Akai Haruma
19 tháng 11 2017 lúc 17:35

Lời giải:

a)

Bổ đề: Tam giác $ABC$ có \(\angle A=\alpha\) thì \(S_{ABC}=\frac{AB.AC\sin \alpha}{2}\)

Chứng minh: Từ $B$ kẻ đường cao $BH$ của tam giác

Khi đó:\(S_{ABC}=\frac{BH.AC}{2}\) (1)

\(\frac{BH}{AB}=\sin \alpha\) (TH góc A tù thì ta có: \(\frac{BH}{AB}=\sin (180^0-\alpha)=\sin \alpha\) ) \(\Rightarrow BH=AB.\sin \alpha\) (2)

Từ (1).(2) suy ra \(S_{ABC}=\frac{AB.AC.\sin \alpha}{2}\)

--------------------------------------------

Quay lại bài toán:

a)

\(S_{ABCD}=S_{ABC}+S_{ADC}=\frac{ab.\sin \angle ABC}{2}+\frac{cd.\sin \angle ADC}{2}\)

\(\sin ABC, \sin ADC\leq 1\Rightarrow S_{ABCD}\leq \frac{ab}{2}+\frac{cd}{2}=\frac{ab+cd}{2}\)

Ta có đpcm.

b)

* Vế đầu tiên:

\(2S=S_{ABC}+S_{ADC}+S_{BAD}+S_{BCD}\)

\(=\frac{ac\sin \angle ABC}{2}+\frac{cd\sin \angle ADC}{2}+\frac{ad.\sin \angle BAD}{2}+\frac{bc\sin \angle BCD}{2}\)

\(\leq \frac{ac}{2}+\frac{cd}{2}+\frac{ad}{2}+\frac{bc}{2}=\frac{ac+cd+ad+bc}{2}\)

\(\Leftrightarrow 4S\leq ac+cd+ad+bc=(a+c)(b+d)\) (đpcm)

* Vế sau:

\(p^2=\left(\frac{a+b+c+d}{2}\right)^2=\frac{[(a+c)+(b+d)]^2}{4}\)

Áp dụng bđt AM-GM: \((a+c)+(b+d)\geq 2\sqrt{(a+c)(b+d)}\)

\(\Rightarrow 4p^2=[(a+c)+(b+d)]^2\geq 4(a+c)(b+d)\)

\(\Rightarrow p^2\geq (a+c)(b+d)\) (đpcm)

c)

Theo phần b, ta đã chứng minh được:

\(S\leq \frac{(a+c)(b+d)}{4}\) (1)

Mặt khác, áp dụng BĐT AM-GM:

\(a^2+b^2\geq 2ab\)

\(a^2+d^2\geq 2ad\)

\(b^2+c^2\geq 2bc\)

\(c^2+d^2\geq 2cd\)

Cộng theo vế: \(\Rightarrow 2(a^2+b^2+c^2+d^2)\geq 2(ab+ad+bc+cd)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2\geq ab+ad+bc+cd=(a+c)(b+d)\) (2)

Từ \((1);(2)\Rightarrow S\leq \frac{a^2+b^2+c^2+d^2}{4}\) (đpcm)


Các câu hỏi tương tự
Khánh Huyền
Xem chi tiết
Ngô Bá Khá
Xem chi tiết
Thuỳ Dương
Xem chi tiết
Bình Lê
Xem chi tiết
hoàng thị ngọc ánh
Xem chi tiết
Trần Văn Tú
Xem chi tiết
Vũ Hà linh
Xem chi tiết
Y
Xem chi tiết
Nguyễn Thị Ngọc Oanh
Xem chi tiết