\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{x\left(x+2\right)}\right)=\frac{8}{17}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{17}\)
\(\Rightarrow x+2=17\)
\(\Rightarrow x=15\)
Vậy \(x=15\)
ta có:
1/1.3+1/3.5+...+1/x(x+2)=8/17
1/2.(2/1.3+2/3.5+...+2/x(x+2))=8/17
1/2.(1-1/3+1/3-1/5+...+1/x-1/x+2)=8/17
1/2.(1-1/x+2)=8/17
1-1/x+2=16/17
1/x+2=1/17
=>x=15
hoc24 ko cho đăng câu hoi bằng hình nhé