1.
Ta thấy: $-1\leq \cos x\leq 1$
$\Leftrightarrow 1\leq 2\cos x+3\leq 5$
$\Leftrightarrow 1\leq \sqrt{2\cos x+3}\leq \sqrt{5}$
$\Leftrightarrow -3\leq \sqrt{2\cos x+3}-4\leq \sqrt{5}-4$
Vậy $y_{\min}=-3$ khi $x=(2k+1)\pi$, $y_{\max}=\sqrt{5}-4$ khi $x=2k\pi$ với $k$ nguyên.
2.
\(y=\cos ^2x-6\sin x+3=1-\sin ^2x-6\sin x+3\)
\(=-\sin ^2x-6\sin x+4\)
Ta thấy: $\sin ^2x\leq 1\Rightarrow -\sin ^2x\geq -1$
$\sin x\leq 1\Leftrightarrow -6\sin x\geq -6$
$\Rightarrow y=-\sin ^2x-6\sin x+4\geq -1-6+4=-3$
Vậy $y_{\min}=-3$. Giá trị này đạt tại $x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.
Mặt khác:
\(y=-\sin ^2x-6\sin x+4=9-(\sin x+1)(\sin x+5)\)
$-1\leq \sin x\leq 1\Rightarrow (\sin x+1)(\sin x+5)\geq 0$
$\Rightarrow y=9-(\sin x+1)(\sin x+5)\leq 9$
Vậy $y_{\max}=9$. Giá trị này đạt tại $x=2k\pi -\frac{\pi}{2}$ với $k$ nguyên.
3.
Ta thấy:
\(\cos ^2x+4\cos x+5=(\cos x+1)(\cos x+3)+2\geq 2\) do $\cos x\geq -1$
Do đó: $y=\frac{2}{\cos ^2x+4\cos x+5}\leq \frac{2}{2}=1$
Vậy $y_{\max}=1$. Giá trị này đạt tại $x=(2k+1)\pi$ với $k$ nguyên
Lại có:
$\cos ^2x+4\cos x+5=(\cos x-1)(\cos x+5)+10\leq 10$ do $-1\leq \cos x\leq 1$
$\Rightarrow y=\frac{2}{\cos ^2x+4\cos x+5}\geq \frac{2}{10}=\frac{1}{5}$
Vậy $y_{\min}=\frac{1}{5}$. Giá trị này đạt tại $y=2k\pi$ với $k$ nguyên.
4.
\(y=\sin ^4x-2\cos ^2x+5=\sin ^4x-2(1-\sin ^2x)+5\)
\(=\sin ^4x+2\sin ^2x+3\)
Ta thấy $\sin ^2x\leq 1$ nên:
$y=\sin ^4x+2\sin ^2x+3\leq 1+2+3=6$
Vậy $y_{\max}=6$
Lại có:
$\sin ^2x\geq 0; \sin ^4x\geq 0$ nên $y=\sin ^4x+2\sin ^2x+3\geq 3$
Vậy $y_{\min}=3$
5.
\(y=\sin ^2x+2\sin x+5\)
Vì $\sin ^2x\leq 1; \sin x\leq 1$ nên:
$y\leq 1+2+5=8$
Vậy $y_{\max}=8$
Mặt khác:
$y=\sin ^2x+2\sin x+5=(\sin x+1)^2+4\geq 4$
$\Rightarrow y_{\min}=4$
6.
\(-1\leq \sin x\leq 1\Rightarrow 2\leq \sin x+3\leq 4\)
\(\Rightarrow 2\sqrt{2}\leq 2\sqrt{\sin x+3}\leq 4\)
\(\Leftrightarrow \frac{1}{2\sqrt{2}}\geq \frac{1}{2\sqrt{\sin x+3}}\geq \frac{1}{4}\)
Vậy $y_{\min}=\frac{1}{4}; y_{\max}=\frac{1}{2\sqrt{2}}$
7.
\(y=\cos ^4x-2\sin ^2x+1=\cos ^4x-2(1-\cos ^2x)+1\)
\(=\cos ^4x+2\cos ^2x-1\)
Vì $\cos ^2x\geq 0$ nên $y\geq 0+2.0-1=-1$
Vậy $y_{\min}=-1$
Mặt khác: $\cos ^2x\leq 1$ nên:
$y=\cos ^4x+2\cos ^2x-1\leq 1+2-1=2$
Vậy $y_{\max}=2$
8.
\(\sin ^2x-2\cos x+5=1-\cos ^2x-2\cos x+5=-\cos ^2x-2\cos x+6\)
Vì $\cos ^2x\leq 1\Rightarrow -\cos ^2x\geq -1$
$\cos x\leq 1\Rightarrow -2\cos x\geq -2$
$\sin ^2x-2\cos x+5\geq -1-2+6=3$
$\Rightarrow y=\frac{1}{\sin ^2x-2\cos x+5}\leq \frac{1}{3}$
Vậy $y_{\max}=\frac{1}{3}$
Mặt khác:
$-\cos ^2x-2\cos x+6=6-(\cos ^2x+2\cos x)$
$=7-(\cos x+1)^2\leq 7$
$\Rightarrow y=\frac{1}{\sin ^2-2\cos x+5}\geq \frac{1}{7}$
Vậy $y_{\min}=\frac{1}{7}$
9.
$-1\leq \cos 2x\leq 1$
$\Rightarrow 1\leq 2+\cos 2x\leq 3$
$\Rightarrow 1\leq \sqrt{2+\cos 2x}\leq \sqrt{3}$
$\Leftrightarrow 1\leq y\leq \sqrt{3}$
Vậy $y_{\min}=1; y_{\max}=\sqrt{3}$
10.
$y=\sin ^4x+\cos ^4x=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x$
$=1-\frac{1}{2}(2\sin x\cos x)^2=1-\frac{1}{2}\sin ^22x$
Vì $\sin ^22x\geq 0\Rightarrow y=1-\frac{1}{2}\sin ^22x\leq 1$
Vậy $y_{\max}=1$
Vì $\sin ^22x\leq 1\Rightarrow y=1-\frac{1}{2}\sin ^22x\geq 1-\frac{1}{2}=\frac{1}{2}$
Vậy $y_{\min}=\frac{1}{2}$