\(P=\frac{cosx+\sqrt{3}sinx}{\sqrt{3}cosx-sinx}=\frac{\frac{1}{2}cosx+\frac{\sqrt{3}}{2}sinx}{\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx}=\frac{sin\left(\frac{\pi}{6}\right).cosx+cos\left(\frac{\pi}{6}\right).sinx}{cos\left(\frac{\pi}{6}\right).cosx-sin\left(\frac{\pi}{6}\right).sinx}\)
\(P=\frac{sin\left(\frac{\pi}{6}+x\right)}{cos\left(\frac{\pi}{6}+x\right)}=tan\left(\frac{\pi}{6}+x\right)\)