1.
ĐKXĐ: \(\frac{1+x}{1-x}\ge0\Leftrightarrow-1\le x< 1\)
2.
\(cosx-cos3x\ne0\)
\(\Leftrightarrow cos3x\ne cosx\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x\ne x+k2\pi\\3x\ne-x+k2\pi\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{k\pi}{2}\end{matrix}\right.\) \(\Leftrightarrow x\ne\frac{k\pi}{2}\)
3.
a. \(0\le\left|sinx\right|\le1\Rightarrow1\le y\le3\)
\(y_{min}=1\) khi \(\left|sinx\right|=1\)
\(y_{max}=3\) khi \(sinx=0\)
b. \(y=cosx+cos\left(x-\frac{\pi}{3}\right)=2cos\left(x-\frac{\pi}{6}\right).cos\frac{\pi}{6}=\sqrt{3}cos\left(x-\frac{\pi}{6}\right)\)
\(-1\le cos\left(x-\frac{\pi}{6}\right)\le1\Rightarrow-\sqrt{3}\le y\le\sqrt{3}\)
c. \(y=cos^22x+2cos2x+1-1=\left(cos2x+1\right)^2-1\ge-1\)
\(y_{min}=-1\) khi \(cos2x=-1\)
\(cos2x\le1\Leftrightarrow\left\{{}\begin{matrix}cos^22x\le1\\2cos2x\le2\end{matrix}\right.\) \(\Rightarrow y\le3\)
\(y_{max}=3\) khi \(cos2x=1\)
d. \(5-2cos^2x.sin^2x=5-\frac{1}{2}\left(2sinx.cosx\right)^2=5-\frac{1}{2}sin^22x\)
\(0\le sin^22x\le1\Rightarrow\frac{9}{2}\le5-\frac{1}{2}sin^22x\le5\)
\(\Rightarrow\sqrt{\frac{9}{2}}\le y\le\sqrt{5}\)