Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
vi lê

Giúp mình vs!!!😭😭😭

Nguyễn Lê Phước Thịnh
26 tháng 10 2021 lúc 19:38

Câu 5: 

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

 

 

missing you =
26 tháng 10 2021 lúc 19:43

\(c5\) \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}=\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)=\overrightarrow{AB}-\dfrac{2}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\left(đpcm\right)\)

\(c4:\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GG'}\)

\(\overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=\overrightarrow{GG'}\)\(\Leftrightarrow\overrightarrow{G'A}+\overrightarrow{AA'}+\overrightarrow{G'B}+\overrightarrow{B'B}+\overrightarrow{G'C}+\overrightarrow{CC'}=\overrightarrow{GG'}\)

\(\Leftrightarrow\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}=3\overrightarrow{GG'}\)\(\left(dpcm\right)\)

\(c3:a,\) \(2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=2\overrightarrow{IA}+2\overrightarrow{IM}=2\overrightarrow{MI}+2\left(\overrightarrow{IM}+\overrightarrow{MI}\right)=2.\overrightarrow{0}=\overrightarrow{0}\left(đpcm\right)\)

\(b,2\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\)

\(=2\left(\overrightarrow{OI}+\overrightarrow{IA}\right)+\overrightarrow{OI}+\overrightarrow{IB}+\overrightarrow{OI}+\overrightarrow{IC}\)

\(=4\overrightarrow{OI}+2\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\)\(=4\overrightarrow{OI}+\overrightarrow{0}=4\overrightarrow{OI}\left(đpcm\right)\)

\(c2:\) \(\left\{{}\begin{matrix}3AH=2AB\\3AK=AC\\4BM=3MC\\\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\dfrac{3}{2}\overrightarrow{AH}\\\overrightarrow{AC}=3\overrightarrow{AK}\\\overrightarrow{BM}=\dfrac{3}{7}\overrightarrow{BC}\Rightarrow\overrightarrow{BC}=\dfrac{7}{3}\overrightarrow{BM}\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=3\overrightarrow{AK}-\dfrac{3}{2}\overrightarrow{AH}\)

\(\Rightarrow\dfrac{7}{3}\overrightarrow{BM}=3\overrightarrow{AK}-\dfrac{3}{2}\overrightarrow{AH}\Leftrightarrow\overrightarrow{BM}=\dfrac{9}{7}\overrightarrow{AK}-\dfrac{9}{14}\overrightarrow{AH}\)

 

 


Các câu hỏi tương tự
vi lê
Xem chi tiết
Nguyễn Thị Hồng Nhung
Xem chi tiết
vi lê
Xem chi tiết
vi lê
Xem chi tiết
Hanuman
Xem chi tiết
trung Nguyễn
Xem chi tiết
hân zaa
Xem chi tiết