Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
cho đường tròn(0; R) và điểm A nằm ngoài đường tròn sao cho OA =2R. Vẽ các tiếp tuyến AB, AC của ( 0; R) tại hai điểm phân biệt E, F( E nằm giữa A vàF). gọi H là trung điểm của EF
a, CM: ABCH thuộc đường tròn
b, Qua O vẽ đường thẳng vuông góc với OA tại O, đà thẳng này cắt AB, AC lần lượt tại I, J. Tiếp tuyến tại E của ( 0) cắt AB, AC lần lượt tại P và Q. Tính diên tích tam giác AIJ và chu vi tam giác APQ
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O; R), các đường cao BE, CF (E thuộc AC, F thuộc AB). b) Đường thẳng EF cắt đường tròn (O; R) tại M và N (F nằm giữa M và E). Chứng minh AM = AN.
Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
Cho đường tròn (O) đường kính AB cố định. Từ điểm C bất kỳ trên đoạn OA vẽ dây MN vuông góc với AB. Lấy điểm D thuộc cung AM nhỏ; BD cắt MN tại E; AD cắt tia NM tại F. a) Chứng minh : tứ giác ADEC nội tiếp. b) Chứng minh: CA.CB = CE.CF c) Tia AE cắt đường tròn ngoại tiếp tam giác DEF tại điểm I. Chứng minh I nằm trên đường tròn O. d) Xác định vị trí của điểm C trên OA sao cho chu vi tam giác OCN lớn nhất
Cho điểm A nằm ngoài đường tròn (O). Quả A vẽ hai đường tiếp tuyến AB, AC với (O) (B,C là các tiếp điểm). a) Chứng minh các điểm A,B,C,O cùng thuộc một đường tròn, tìm tâm của đường tròn đó. b) Vẽ đường kính BE của (O), AE cắt (O) tại F (F khác E). Chứng minh OA vuông góc với BC tại M rồi từ đó suy ra OB²=OM.OA c) Gọi G là trung điểm của EF,OG cắt BC tại H. Chứng minh OM.OA=OG.OH d) Chứng minh EH là tiếp tuyến của đường tròn (O)
Cho(O;R) đường kính AB, điểm C nằm giữa A và O. Vẽ đường tròn (O') có đường kính CB.
a) Kẻ dây DE của (O) vuông góc với AO tại trung điểm H của AC. Tứ giác ADCE là hình gì? Vì sao?
b) Gọi K là giao điểm của DB và đường tròn (O'). Chứng minh E,C,K thẳng hàng
c) Chứng minh HK là tiếp tuyến của (O')
d) Khi CB= 4/3R. Tính SADBE; góc DBE;và EK
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.