Cho đường thẳng ( O,R) và dây cung BC cố định ( BC <2R). Điểm A di động trên đường tròn (O) sao cho tam giác ABC có 2 góc nhọn và AB<AC. Vẽ đường cao CD của tam giác ABC và đường kính AM. Hạ CE vuông góc AM tại E. Gọi H là trực tâm của tam giác ABC
1/ Chứng minh tứ giác ADEC nội tiếp
2/ Chứng minh góc ABH = góc DEA và DE.BC=DC.BM
1: góc ADC=góc AEC=90 độ
=>ADEC nội tiếp
2: góc ABH=90 độ-góc BAC=góc DEA