\(f\left(-x\right)=a.\left(-x\right)^2+b\left(-x\right)+c=ax^2-bx+c\)
\(\Rightarrow f\left(x\right)+f\left(-x\right)=2ax^2+2c=2\left(ax^2+c\right)⋮2\) \(\forall x\in Z\)
\(f\left(-x\right)=a.\left(-x\right)^2+b\left(-x\right)+c=ax^2-bx+c\)
\(\Rightarrow f\left(x\right)+f\left(-x\right)=2ax^2+2c=2\left(ax^2+c\right)⋮2\) \(\forall x\in Z\)
Cho đa thức f(x)=ax^4+bx^3+cx^2+dx+4a.a) Tìm quan hệ giữa các hệ số a và c;b và d của đa thức f(x) để f(x) có hai nghiệm là x=2 và x=-2. Thử lại với a=3;b=4;b) Với a=1;b=1.Hãy cho biết x=1 và x=-1 có phải là nghiệm đa thức vừa tìm?
Cho đa thức f (x)= x3 + ax2 + bx + c là các số nguyên tùy ý.
Chứng minh rằng: x=\(\dfrac{1}{2}\) không thể là nghiệm của f (x).
giúp mik vớiiii
Bài 1:Biết đa thức f(x)=x3+ax2+bx-2cos nghiệm là -1 và 1.Tìm a,b và nghiệm còn lại của đa thức
Bài 2Cho f(x)=x2+ax +b.Biết f(1)=2; f(2)=3.Tính \(\dfrac{f\left(7\right)-f\left(8\right)}{15}\)
Bài 3:Cho đa thức P(x)=ax+b; Q(x)=bx+a(a;b khác 0).Chứng minh rằng: Nếu nghiệm của đa thức P(x)là số dương thì nghiệm của Q(x)cũng là số dương
Bài 1: a)Chứng tỏ rằng x = 1, x = 7 là hai nghiệm của đa thức g(x) = x^2 - 8x + 7
b) Trong tập {1; 2; -1; 0} số nào là nghiệm của đa thức k(x) = x^4 + 2x^3 - x^2 + x - 3
c) Cho đa thức f(x) = ax^2 + bx + c (a, b, c là hằng số). Chứng minh rằng
Nếu a-b+c = 0 thì f(x) có một nghiệm x = -1
Bài 2: Tìm nghiệm của các đa thức sau:
a) f(x) = 5x + 7 b)h(x) = x^3 + 27
c) 3(x -2) - 5(x+1) d) (2x+5)(x-3)
Bài 13: Cho đa thức f(x)= \(ax^2+bx+c\). Xác định hệ số a,b,c biết f(0)=1; f(1)=-1
Cho f(x) = ax^1 + bx + c với a,b,c là các số hữu tỉ . Chứng tỏ rằng f(-2) . f(3) < hoặc = 0 . Biết rằng 13a + b + 2c = 0
1)cho f(x)=ax2+bx=c với a,b,c là các số hữu tỉ. chứng tỏ f(-2).f(3)\(\le\)0 biết 13a+b+2c=0
2)cho đa thức f(x) =ax+5. tìm a biết f(-3)=-2
3)tìm m để đa thức f(x)=(m-1)x2-3mx+2c có một nghiệm x=1
4)cho g(x)=-2x2+mx-3m+. xác định m biết rằng g(x)nhận 2 làm một nghiệm
mong các bạn giúp đỡ
a) Tìm m để đa thức A(x)=5mx2 - mx + 3m - 2 có nghiệm x=-1
b) Cho đa thức f(x)=ax3+ bx2+ cx+ d trong đó a, b, c, d thuộc Z và thỏa mãn b=3a+c. Chứng minh rằng f(1).f(2) là bình phương của 1 số nguyên
ch đa thức f (x) = ax\(^2\)+ bx + c là các số nguyên . chứng tỏ rằng ko có thể xảy ra đồng thời f (2016) = f (2017 ) và f (2018) = 2018 vs mọi số nguyên a, b, c