1/ \(\lim\limits_{x\to 1}\) \(\dfrac{\sqrt[3]{7+x^3}-\sqrt{3+x^2}}{x-1}\)
2/ \(\lim\limits_{x \to \ +\infty} \)\(x\left[\sqrt{4x^2+5}-\sqrt[3]{8x^3-1}\right]\)
3/ \(\lim\limits_{x\to 1}\)\(\dfrac{x^3-2x-1}{x^5-2x-1}\)
Giải giúp mình với ạ
a) lim \(\dfrac{2x^3-5x-4}{\left(x+1\right)^2}\) khi x tiến đến -1.
b) lim (x3 + 2x2\(\sqrt{x}\) - 1) khi x tiến đến dương vô cùng.
Giúp mình với ạ.
Tìm các giới hạn sau :
a, lim\(\dfrac{2x^2+x-6}{x^3+8}\) khi x→-2
b, lim\(\dfrac{x^4-x^2-72}{x^2-2x-3}\) khi x→3
c, lim\(\dfrac{x^5+1}{x^3+1}\) khi x→-1
d, lim \(\left(\dfrac{2}{x^2-1}-\dfrac{1}{x-1}\right)\) khi x→1
a. Lim x->3 x^3-27/3x^2-5x-2 b. Lim x->2 căn bậc hai (x+2)-2/4x^2-3x-2 c. Lim x->1 1-x^2/x^2-5x+4 d. Lim x->1 căn bậc ba (x+7)/x^3+27+1
1/ lim x-> +∞ \(\dfrac{1}{\sqrt{x^2+x+1}-x}\)
2/ lim x->+∞ \(\dfrac{3x-2\sqrt{x}+\sqrt{x^4-5x}}{2x^2+4x-5}\)
help mình vs ạ. cảm ơn ~~~~
a,\(^{lim}_{x->2}\frac{\sqrt[3]{8x+11}-\sqrt{x+7}}{x^2-3x+2}\)
b, \(^{lim}_{x->0}\frac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
c, \(^{lim}_{x->1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)
d,\(^{lim}_{x->0}\frac{\sqrt{1+2x}.\sqrt[3]{1+4x}-1}{x}\)
e,\(^{lim}_{x->1}\frac{x^4-1}{x^3-2x^2+x}\)
f,\(^{lim}_{x->1}\left(\frac{1}{1-x}-\frac{3}{1-x^3}\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(3x^3+5x^2-9\sqrt{2}x-2017\right)\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-\sqrt[3]{2x^3+x-1}\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(x-\sqrt{x^2+x+1}\right)\)
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt[3]{x^3+x^2+1}+\sqrt{x^2+x+1}\right)\)
\(\lim\limits_{x\rightarrow2}\dfrac{x-\sqrt{x+2}}{x-\sqrt[3]{3x+2}}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{x^2}\)
\(\lim\limits_{x\rightarrow-1}\dfrac{\sqrt{5+4x}-\sqrt[3]{7+6x}}{x^3+x^2-x-1}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{2x+3}-x}{x^2-4x+3}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}-1}{\sqrt[4]{2x+1}-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}-\sqrt[3]{1+6x}}{x^2}\)
\(\lim\limits_{x\rightarrow1^+}\dfrac{x^2-x+1}{x^2-1}\)
\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)
\(\lim\limits_{x\rightarrow3}\dfrac{\sqrt{x+6}-3}{\sqrt{2x-2}-2}\)