\(3,\\ a,\dfrac{2011}{2010}=1+\dfrac{1}{2010};\dfrac{3011}{3010}=1+\dfrac{1}{3010}\\ \dfrac{1}{2010}>\dfrac{1}{3010}\left(2010< 3010\right)\Rightarrow\dfrac{2011}{2010}>\dfrac{3011}{3010}\\ b,A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ A=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\\ A=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)\\ A=\dfrac{1}{51}+\dfrac{1}{52}+....+\dfrac{1}{100}=B\)
\(4,\\ a,\dfrac{x+5}{x+1}=1+\dfrac{4}{x+1}\in Z\Leftrightarrow4⋮x+1\\ \Leftrightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Leftrightarrow x\in\left\{-5;-3;-2;0;1;3\right\}\\ b,\dfrac{2x+4}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=2-\dfrac{2}{x+3}\in Z\\ \Leftrightarrow2⋮x+3\Leftrightarrow x+3\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{-5;-4;-2;-1\right\}\)
\(5,\\ -\left|3x+\dfrac{1}{5}\right|\le0\\ \Leftrightarrow A=2017-\left|3x+\dfrac{1}{5}\right|\le2017\\ A_{max}=2017\Leftrightarrow3x+\dfrac{1}{5}=0\Leftrightarrow x=-\dfrac{1}{15}\\ 6,\\ \left\{{}\begin{matrix}\left(x+\dfrac{1}{2}\right)^2\ge0\\\left|2y-\dfrac{3}{4}\right|\ge0\end{matrix}\right.\Leftrightarrow A=\left(x+\dfrac{1}{2}\right)^2+\left|2y-\dfrac{3}{4}\right|+\dfrac{175}{3}\ge\dfrac{175}{3}\\ A_{min}=\dfrac{175}{3}\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\2y-\dfrac{3}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{3}{8}\end{matrix}\right.\)
Bài 5:
\(A=-\left|3x+\dfrac{1}{5}\right|+2017\le2017\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{15}\)