ta có P(x)=x^2+ax+b ; Q(x)=x^2+cx+d
ta có x1 và x2 là nghiêm của P(x)Dán
nên \(x_1^2+ax_1+b=0;x_2^2+ax_2+b=0\)
\(\Rightarrow x_1^2=-ax_1-b\) và \(x_2^2=-ax_2-b\) (1)
Ta có x1,x2 là nghiêm của Q(x)
nên \(x_1^2+cx_1+d=0;x_2^2+cx_2+d=0\)
\(\Rightarrow x_1^2=-cx_1-d\)và \(x_2^2=-cx_2-d\) (2)
Từ (1) và (2) suy ra \(-ax_1-b=-cx_1-d\\ -ax_2-b=-cx_2-d\)
Do đó \(ax_1+b=cx_1+d\\ ax_2+b=+cx_2+d\)
Suy ra\(x_1^2+ax_1+b=x^2_1+cx_1+d\\ x^2_2+ax_2+b=x^2_2+cx_2+d\)
Nên P(x)=Q(x)
Q(x) =x2 +ax + b
P(x) = x2 +cx + d
Vì x1;x2 đều là nghiệm của P(x); Q(x)
=>x1;x2 là nghiệm của : P(x) - Q(x)=(c-a)x +(d-b)
=> PT: (c-a)x +(d-b) =0 có 2 nghiệm x1;x2
=>\(\left\{{}\begin{matrix}c-a=0\\d-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)
Nên => P(x) = Q(x) dpcm