Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
DẠNG 2: DÃY SỐ MÀ CÁC SỐ HẠNG KHÔNG CÁCH ĐỀU.
Bài 1. Tính A = 1.2 + 2.3 + 3.4 + … + n.(n + 1)
Hướng dẫn giải
Cách 1:
Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhiên liên tiếp, khi đó:
Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a1= 1.2.3 - 0.1.2
a2 = 2.3 → 3a2 = 2.3.3 → 3a2= 2.3.4 - 1.2.3
a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
…………………..
an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)
Cộng từng vế của các đẳng thức trên ta có:
3(a1 + a2 + … + an) = n(n + 1)(n + 2)
3(a1 + a2 + ... + an) = n(n + 1)(n + 2) ⇒
Cách 2: Ta có
3A = 1.2.3 + 2.3.3 + … + n(n + 1).3
3A = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)]
3A = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3A = n(n + 1)(n + 2)
* Tổng quát hoá ta có:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …
Ta dễ dàng chứng minh công thức trên như sau:
k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)
Bài 2. Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Hướng dẫn giải
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
4B = (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
Bài 3. Tính C = 1.4 + 2.5 + 3.6 + 4.7 + … + n(n + 3)
Hướng dẫn giải
Ta thấy: 1.4 = 1.(1 + 3)
2.5 = 2.(2 + 3)
3.6 = 3.(3 + 3)
4.7 = 4.(4 + 3)
…….
n(n + 3) = n(n + 1) + 2n
Vậy C = 1.2 + 2.1 + 2.3 + 2.2 + 3.4 + 2.3 + … + n(n + 1) +2n
C = 1.2 + 2 +2.3 + 4 + 3.4 + 6 + … + n(n + 1) + 2n
C = [1.2 +2.3 +3.4 + … + n(n + 1)] + (2 + 4 + 6 + … + 2n)
⇒ 3C = 3.[1.2 +2.3 +3.4 + … + n(n + 1)] + 3.(2 + 4 + 6 + … + 2n)
3C = 1.2.3 + 2.3.3 + 3.4.3 + … + n(n + 1).3 + 3.(2 + 4 + 6 + … + 2n)
3C = n(n + 1)(n + 2) +
⇒ C = + =
Bài 4: Tính D = 12 + 22 + 32 + .... + n2
Hướng dẫn giải
Nhận xét: Các số hạng của bài 1 là tích của hai số tự nhiên liên tiếp, còn ở bài này là tích của hai số tự nhiên giống nhau. Do đó ta chuyển về dạng bài tập 1:
Ta có:
A = 1.2 + 2.3 + 3.4 + ...+ n(n + 1)
A = 1.(1 + 1) + 2.(1 + 2) + 3.(1 + 3) + .... + n.(n + 1)
A = 12 + 1.1 + 22 + .1 + 32 + 3.1 + ... + n2 + n.1
A = (12 + 22 + 32 + .... + n2) + (1 + 2 + 3 + ... + n)
Mặt khác theo bài tập 1 ta có:
và 1 + 2 + 3 + .... + n =
⇒D = 12 + 22 + 32 + .... + n2 =
Bài 5: Tính E = 13 + 23 + 33 + ... + n3
Hướng dẫn giải
Tương tự bài toán ở trên, xuất phát từ bài toán 2, ta đưa tổng B về tổng E:
B = 1.2.3 + 2.3.4 + 4.5.6 + ... + (n - 1)n(n + 1)
B = (2 - 1).2.(2 + 1) + (3 -1).3.(3 +1) + ....+ (n - 1).n.(n + 1)
B = (23 - 2) + (33 - 3) + .... + (n3 - n)
B = (23 + 33 + .... +n3) - (2 + 3 + ... + n)
B = (13 + 23 + 33 + ... + n3) - (1 + 2 + 3 + ... + n)
B = (13 + 23 + 33 + ... + n3) -
⇒ 13 + 23 + 33 + ... + n3 = B +
Mà
⇒ E = 13 + 23 + 33 + ... + n3 = +
tìm số tự nhiên n và chữ số a biết rằng 1+2+3+...+n=aaa (aaa là số có 3 chữ số giống hệt nhau)
CÁC BẠN ƠI, GIÚP MÌNH VỚI MÌNH CẦN GẤP LẮM!!!! /A\
Giải giúp em với anh chị ơi,5 sao ạ em cảm ơn(lời giải chi tiết ạ)
Chọn 3 chữ số có lặp lại từ 0, 1, 2, 4, 6 để tạo các số có 3 chữ số. Trong số này
số đó có bao nhiêu số chia hết cho 4?
Giúp mình với !
1 , tìm 4 số tự nhiên liên tiếp sao cho tổng 2 số sau gấp 2 lần tổng 2 số đầu .
Cho hàm số \(y=f\left(x\right)=ax^2+bx+1\)
a) Biết f(1) = 1 ; f(-1) = 3 . Tìm a,b
b) với a,b tìm được ở câu a . Chứng minh rằng với mọi số tự nhiên n,n >1 thì phân số \(\dfrac{n}{f\left(n\right)}\) tối giản
Tìm số tự nhiên có hai chữ số sao cho số đó bằng :
a) sáu lần tích các chữ số của số đó
b) hai lần tích các chữ số của số đó
TÌm 3 phân số biết tổng của chúng bằng \(1\dfrac{1}{70}\) , các tử của chúng tỉ lệ với 3;4;5 và các mẫu tương ứng của chúng tỉ lệ với 5;1;2