Cho tam giác ABC vuông tại A có \(\widehat{B}\) = \(60^0\), BC = 6cm.
a) Tính AB, AC (kết quả làm tròn đến chữ số thập phân thứ nhất)
b) Kẻ đường cao AH của tam giác ABC. Tính HB, HC
c) Trên tia đối của tia BA lấy điểm D sao cho DB = BC. Chứng minh: \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
Giải tam giác ABC có AB = 5cm, AC = 7cm ; \(\widehat{A}=42^0\)
\(\Delta ABC\) vuông tại A có BC = 8cm, \(\widehat{C}=38^0\) . Tính AB, AC, \(\widehat{A}\) , \(\widehat{B}\)
Cho tam giác ABC vuông tại B. Giải tam giác ABC, biết rằng:
a) \(\widehat{A}\) = \(40^0\), AC = 8cm
b) cotC = \(\dfrac{1}{\sqrt{3}}\); AB = 5cm
Tam giác ABC có \(\widehat{A}=105^0;\widehat{B}=45^0;CB=4cm\). Tính độ dài các cạnh AB, AC ?
Cho \(\Delta ABC\) vuông tại B có \(\widehat{C}=60^0\),AC = 6 cm
a) Trên tia đối của tia CB lấy điểm N sao cho CN = AC. C/m \(\dfrac{CB}{CN}=\dfrac{AB}{AN}\)
b) Đường thẳng song song với đường phân giác của \(\widehat{ACN}\) kẻ từ B cắt AN tại H. C/m \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{BN^2}\)
Cho tam giác ABC vuông ở A, AB = 6cm, AC = 8cm
a) Tính \(BC,\widehat{B},\widehat{C}\)
b) Phân giác của góc A cắt BC tại D. Tính BD, CD
c) Từ D kẻ DE và DF lần lượt vuông góc với AB và AC. Tứ giác AEDF là hình gì ? Tính chu vi và diện tích của tứ giác AEDF
Cho tam giác ABC vuông tại C có \(\widehat{B}=37^0\). Gọi I là giao điểm của cạnh BC với đường trung trực của AB. Hãy tính AB, AC nếu biết BI = 20
Tam giác ABC có BC = 24cm, \(\widehat{B}=60^o,\widehat{C}=40^o\). Dùng bảng lượng giác tính diện tích tam giác