\(\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}+\sqrt{3}\left(x^2-3x+1\right)=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow ab+\sqrt{3}\left(2a^2-b^2\right)=0\)
\(\Leftrightarrow\left(\sqrt{3}a+b\right)\left(2a-\sqrt{3}b\right)=0\)
\(\Leftrightarrow4a^2=3b^2\)
\(\Leftrightarrow4\left(x^2-x+1\right)=3\left(x^2+x+1\right)\)
\(\Leftrightarrow...\)