Không biết sao bạn cho thêm \(x\in Z\) vào cuối câu nhỉ? Giải pt nghiệm nguyên lai pt vô tỉ à :v
Bài làm :
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x+2\right)}+\sqrt{\left(x-1\right)\left(x+1\right)}+6=3\sqrt{x+1}+2\sqrt{x+2}+2\sqrt{x-1}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x-1}=b\\\sqrt{x+2}=c\end{matrix}\right.\)
\(pt\Leftrightarrow ac+ab+6=3a+2b+2c\)
\(\Leftrightarrow ac+ab+6-3a-2b-2c=0\)
\(\Leftrightarrow c\left(a-2\right)+b\left(a-2\right)-3\left(a-2\right)=0\)
\(\Leftrightarrow\left(a-2\right)\left(b+c-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2\\b+c=3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x-1}+\sqrt{x+2}=3\end{matrix}\right.\)
+) TH1: \(\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
\(\Leftrightarrow x=3\) ( thỏa )
+) TH2: \(\sqrt{x-1}+\sqrt{x+2}=3\)
\(\Leftrightarrow x-1+x+2+2\sqrt{\left(x-1\right)\left(x+2\right)}=9\)
\(\Leftrightarrow2\sqrt{\left(x-1\right)\left(x+2\right)}=8-2x\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x+2\right)}=4-x\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=\left(4-x\right)^2\)
\(\Leftrightarrow x^2+x-2=x^2-8x+16\)
\(\Leftrightarrow9x=18\)
\(\Leftrightarrow x=2\) ( thỏa )
Vậy \(x\in\left\{2;3\right\}\).