ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x\ge-3\\x\ge-4\\x\ge-7\end{matrix}\right.\Leftrightarrow}x\ge-2\)
\(\sqrt{x+2}-\sqrt{x+3}=\sqrt{x+4}-\sqrt{x+7}\)
\(\Leftrightarrow x+2-2\sqrt{\left(x+2\right)\left(x+3\right)}+x+3=x+4-2\sqrt{\left(x+4\right)\left(x+7\right)}+x+7\)
\(\Leftrightarrow-2\sqrt{\left(x+2\right)\left(x+3\right)}+2\sqrt{\left(x+4\right)\left(x+7\right)}=6\)
\(\Leftrightarrow2\left[\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}\right]=6\)
\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)}-\sqrt{\left(x+2\right)\left(x+3\right)}=3\)
\(\Leftrightarrow\left(x+4\right)\left(x+7\right)-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}+\left(x+2\right)\left(x+3\right)=9\)
\(\Leftrightarrow-2\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=-2x^2-16x-8\)
\(\Leftrightarrow\sqrt{\left(x+4\right)\left(x+7\right)\left(x+2\right)\left(x+3\right)}=x^2+8x+4\)
Có lẽ làm sai ở đâu đó, mk lười :V
ĐKXĐ: \(x\ge-2\)
\(\Leftrightarrow\sqrt{x+2}+\sqrt{x+7}=\sqrt{x+3}+\sqrt{x+4}\)
\(\Leftrightarrow2x+9+2\sqrt{x^2+9x+14}=2x+7+2\sqrt{x^2+7x+12}=0\)
\(\Leftrightarrow\sqrt{x^2+9x+14}+1=\sqrt{x^2+7x+12}\)
\(\Leftrightarrow x^2+9x+15+2\sqrt{x^2+9x+14}=x^2+7x+12\)
\(\Leftrightarrow2\sqrt{x^2+9x+14}=-2x-3\) (\(x\le-\frac{3}{2}\))
\(\Leftrightarrow4\left(x^2+9x+14\right)=4x^2+12x+9\)
\(\Leftrightarrow24x=-47\)
\(\Leftrightarrow x=-\frac{47}{24}\)