\(\sqrt{x-\dfrac{1}{x}}-\sqrt{1-\dfrac{1}{x}}=\dfrac{x-1}{x}\)
\(\Leftrightarrow\dfrac{\left(x-\dfrac{1}{x}\right)-\left(1-\dfrac{1}{x}\right)}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{x-1}{x}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}\right)=0\)
Pt \(\dfrac{1}{\sqrt{x-\dfrac{1}{x}}+\sqrt{1-\dfrac{1}{x}}}-\dfrac{1}{x}=0\) vô n0
=> x - 1 = 0
<=> x = 1 (nhận)