ĐKXĐ:
$\left\{\begin{matrix}
10-3x\geq 0\\x-2\geq 0
\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{10}{3}\\x\geq 2
\end{matrix}\right.$
Phương trình tương đương:
$\sqrt{4-3\sqrt{10-3x}}=x-2$
$\Leftrightarrow 4-3\sqrt{10-3x}=(x-2)^2$ (1)
Đặt $a-2=-\sqrt{10-3x}$ (2)
Từ (1) và (2) ta có hệ pt:
$\left\{\begin{matrix}
4-3(a-2)=(x-2)^2\\ 10-3x=(a-2)^2
\end{matrix}\right.$
$\Leftrightarrow
\left\{\begin{matrix}
10-3a=(x-2)^2\\10-3x=(a-2)^2
\end{matrix}\right.$
Giải hệ ta được nghiệm x = a suy ra x = 3.